evaluate the limit

Vali

Junior Member
Joined
Feb 27, 2018
Messages
87
a0,a1,...,ak\displaystyle a_{0},a_{1},...,a_{k} are real numbers and a0+a1+...+ak=0\displaystyle a_{0}+a_{1}+...+a_{k}=0
L=limn(a0n3+a1n+13+...+akn+k3)\displaystyle L=\lim_{n\rightarrow \infty }(a_{0}\sqrt[3]{n}+a_{1}\sqrt[3]{n+1}+...+a_{k}\sqrt[3]{n+k})
L=?\displaystyle L=?

I have no idea how to start, I think I should write difference of sqrt to find the limit.
 
a0,a1,...,ak\displaystyle a_{0},a_{1},...,a_{k} are real numbers and a0+a1+...+ak=0\displaystyle a_{0}+a_{1}+...+a_{k}=0
L=limn(a0n3+a1n+13+...+akn+k3)\displaystyle L=\lim_{n\rightarrow \infty }(a_{0}\sqrt[3]{n}+a_{1}\sqrt[3]{n+1}+...+a_{k}\sqrt[3]{n+k})
L=?\displaystyle L=?

I have no idea how to start, I think I should write difference of sqrt to find the limit.
What can you say about L=limn(arn+r3)\displaystyle L=\lim_{n\rightarrow \infty }(a_{r}\sqrt[3]{n+r}) for any r > 0? That is, what, if anything, is the difference between these limits with different r?
 
Last edited:
I think there's no difference because everytime L tends to infinity
Meanwhile, I think I found a solution.

a0=a1a2...ak\displaystyle a_{0}=-a_{1}-a_{2}-...-a_{k} so L=limn[(a1a2...ak)n3+a1n+13+...+akn+k3]\displaystyle L=\lim_{n\rightarrow \infty }[(-a_{1}-a_{2}-...-a_{k})\sqrt[3]{n}+a_{1}\sqrt[3]{n+1}+...+a_{k}\sqrt[3]{n+k}]


L=limn(a1n3a2n3...akn3+a1n+13+...+akn+k3)\displaystyle L=\lim_{n\rightarrow \infty }(-a_{1}\sqrt[3]{n}-a_{2}\sqrt[3]{n}-...-a_{k}\sqrt[3]{n}+a_{1}\sqrt[3]{n+1}+...+a_{k}\sqrt[3]{n+k})


Now I group the terms and I have


L=limn[a1(n+13n3)+a2(n+23n3)+...+ak(n+k3n3)]\displaystyle L=\lim_{n\rightarrow \infty }[a_{1}(\sqrt[3]{n+1}-\sqrt[3]{n})+a_{2}(\sqrt[3]{n+2}-\sqrt[3]{n})+...+a_{k}(\sqrt[3]{n+k}-\sqrt[3]{n})]


I split in more limits, the constants a0,a1,...,ak\displaystyle a_{0},a_{1},...,a_{k} go ahead the limits and the limits are 0 after some calculations.In the end L=a10+a20+...+ak0=0\displaystyle L=a_{1}\cdot 0+a_{2}\cdot 0+...+a_{k}\cdot 0=0
 
I think there's no difference because everytime L tends to infinity
Meanwhile, I think I found a solution.

a0=a1a2...ak\displaystyle a_{0}=-a_{1}-a_{2}-...-a_{k} so L=limn[(a1a2...ak)n3+a1n+13+...+akn+k3]\displaystyle L=\lim_{n\rightarrow \infty }[(-a_{1}-a_{2}-...-a_{k})\sqrt[3]{n}+a_{1}\sqrt[3]{n+1}+...+a_{k}\sqrt[3]{n+k}]


L=limn(a1n3a2n3...akn3+a1n+13+...+akn+k3)\displaystyle L=\lim_{n\rightarrow \infty }(-a_{1}\sqrt[3]{n}-a_{2}\sqrt[3]{n}-...-a_{k}\sqrt[3]{n}+a_{1}\sqrt[3]{n+1}+...+a_{k}\sqrt[3]{n+k})


Now I group the terms and I have


L=limn[a1(n+13n3)+a2(n+23n3)+...+ak(n+k3n3)]\displaystyle L=\lim_{n\rightarrow \infty }[a_{1}(\sqrt[3]{n+1}-\sqrt[3]{n})+a_{2}(\sqrt[3]{n+2}-\sqrt[3]{n})+...+a_{k}(\sqrt[3]{n+k}-\sqrt[3]{n})] On one hand we get [tex}\infty-\infty[/tex]


I split in more limits, the constants a0,a1,...,ak\displaystyle a_{0},a_{1},...,a_{k} go ahead the limits and the limits are 0 after some calculations.In the end L=a10+a20+...+ak0=0\displaystyle L=a_{1}\cdot 0+a_{2}\cdot 0+...+a_{k}\cdot 0=0

So you are not using a1 + a2 + ... +ak = 0. It could be possible that this is not needed. My main concern is that you think that inf - inf = 0. This is not true at all. Consider L=limn[(n+k)(n)]\displaystyle L=\lim_{n\rightarrow \infty }[(n+k) - (n)]. On one hand, you get \displaystyle \infty - \infty, while on the otherhand, n+k - n =k, so the L=limn[(n+k)(n)]\displaystyle L=\lim_{n\rightarrow \infty }[(n+k) - (n)] = k, for some number k.

So in the end we see that some limits that give us \displaystyle \infty - \infty can actually equal ANY NUMBER.
 
Last edited:
I think there's no difference because everytime L tends to infinity
Meanwhile, I think I found a solution
a0=a1a2...ak\displaystyle a_{0}=-a_{1}-a_{2}-...-a_{k} so L=limn[(a1a2...ak)n3+a1n+13+...+akn+k3]\displaystyle L=\lim_{n\rightarrow \infty }[(-a_{1}-a_{2}-...-a_{k})\sqrt[3]{n}+a_{1}\sqrt[3]{n+1}+...+a_{k}\sqrt[3]{n+k}] (1)
L=limn(a1n3a2n3...akn3+a1n+13+...+akn+k3)\displaystyle L=\lim_{n\rightarrow \infty }(-a_{1}\sqrt[3]{n}-a_{2}\sqrt[3]{n}-...-a_{k}\sqrt[3]{n}+a_{1}\sqrt[3]{n+1}+...+a_{k}\sqrt[3]{n+k}) (2)
Now I group the terms and I have
L=limn[a1(n+13n3)+a2(n+23n3)+...+ak(n+k3n3)]\displaystyle L=\lim_{n\rightarrow \infty }[a_{1}(\sqrt[3]{n+1}-\sqrt[3]{n})+a_{2}(\sqrt[3]{n+2}-\sqrt[3]{n})+...+a_{k}(\sqrt[3]{n+k}-\sqrt[3]{n})] (3)

I think you, Vali, are correct in that (1)(2)(3)\displaystyle \large\color{blue}{(1)\to(2)\to(3)}

Lets point out that:
\(\displaystyle \begin{align*}\left(\sqrt[3]{n+k}-\sqrt[3]{n}\right)&=\left(\sqrt[3]{n+k}-\sqrt[3]{n}\right)\left(\dfrac{\sqrt[3]{(n+k)^2}+\sqrt[3]{(n+1)}\sqrt[3]{n}+\sqrt[3]{n^2}}{\sqrt[3]{(n+k)^2}\sqrt[3]{(n+1)}\sqrt[3]{n}+\sqrt[3]{n^2}}\right)\\&=\left(\dfrac{1}{\sqrt[3]{(n+k)^2}+\sqrt[3]{(n+1)}\sqrt[3]{n}+\sqrt[3]{n^2}}\right) \end{align*}\)
 
So the limit is not 0 too ?
Because we have n at denominator
 
I think there's no difference because everytime L tends to infinity Meanwhile, I think I found a solution.
a0=a1a2...ak\displaystyle a_{0}=-a_{1}-a_{2}-...-a_{k} so L=limn[(a1a2...ak)n3+a1n+13+...+akn+k3]\displaystyle L=\lim_{n\rightarrow \infty }[(-a_{1}-a_{2}-...-a_{k})\sqrt[3]{n}+a_{1}\sqrt[3]{n+1}+...+a_{k}\sqrt[3]{n+k}]
L=limn(a1n3a2n3...akn3+a1n+13+...+akn+k3)\displaystyle L=\lim_{n\rightarrow \infty }(-a_{1}\sqrt[3]{n}-a_{2}\sqrt[3]{n}-...-a_{k}\sqrt[3]{n}+a_{1}\sqrt[3]{n+1}+...+a_{k}\sqrt[3]{n+k})
Now I group the terms and I have
L=limn[a1(n+13n3)+a2(n+23n3)+...+ak(n+k3n3)]\displaystyle L=\lim_{n\rightarrow \infty }[a_{1}(\sqrt[3]{n+1}-\sqrt[3]{n})+a_{2}(\sqrt[3]{n+2}-\sqrt[3]{n})+...+a_{k}(\sqrt[3]{n+k}-\sqrt[3]{n})]
I split in more limits, the constants a0,a1,...,ak\displaystyle a_{0},a_{1},...,a_{k} go ahead the limits and the limits are 0 after some calculations.In the end L=a10+a20+...+ak0=0\displaystyle L=a_{1}\cdot 0+a_{2}\cdot 0+...+a_{k}\cdot 0=0
So the limit is not 0 too ?
Because we have n at denominator
I'm 99% sure it's 0.
Lets point out that:
\(\displaystyle \begin{align*}\left(\sqrt[3]{n+k}-\sqrt[3]{n}\right)&=\left(\dfrac{1}{\sqrt[3]{(n+k)^2}+\sqrt[3]{(n+1)}\sqrt[3]{n}+\sqrt[3]{n^2}}\right) \end{align*}\)
L=limn(1(n+k)23+(n+1)3n3+n23)=0\displaystyle L=\displaystyle\lim_{n\rightarrow \infty }\left(\dfrac{1}{\sqrt[3]{(n+k)^2}+\sqrt[3]{(n+1)}\sqrt[3]{n}+\sqrt[3]{n^2}}\right)=0
 
Top