Hi all, I’m trying to understand a solution involving complex numbers in trigonometric form. The problem is:
Find the argument of the complex number [imath]z_1=z^2-z[/imath] if [imath]z=cos(\varphi)+isin(\varphi)[/imath].
The solution proceeds as follows:
[math]z_1=\left( cos(\varphi)+isin(\varphi)\right)^2-(cos(\varphi)+isin(\varphi))[/math][math]z_1=\left( cos(2\varphi)-cos(\varphi)\right)+i\left( sin(2\varphi)-sin(\varphi)\right)[/math][math]z_1=2sin\left(\frac{\varphi}{2}\right)\left( -sin\left(\frac{3\varphi}{2} \right)+icos\left( \frac{3\varphi}{2}\right)\right)[/math]
Thus the modulus is
[math]\left| z_1\right|=\sqrt{4sin^2\left(\frac{\varphi}{2}\right)\left(sin^2\left( \frac{3\varphi}{2}\right) + cos^2\left( \frac{3\varphi}{2}\right)\right)}=2 \left| sin\left(\frac{\varphi}{2}\right)\right|[/math]
In accordance with the definition of absolute value, we have to consider three cases:
(a) If [imath]sin\left(\frac{\varphi}{2} \right)=0[/imath], that is [imath]\varphi=2k\pi[/imath], [imath]k[/imath] is any integer, the argument of [imath]z_1[/imath] is not defined.
(b) If [imath]sin\left(\frac{\varphi}{2} \right)>0[/imath], which occurs when [imath]4\pi k<\varphi<(4k+2)\pi[/imath] then [imath]\left| z_1\right|=2sin\left(\frac{\varphi}{2} \right)[/imath] and the trigonometric form of the complex number [imath]z_1[/imath] is as follows:
[math]z_1=2sin\left(\frac{\varphi}{2}\right)\left( -sin\left(\frac{3\varphi}{2} \right)+icos\left( \frac{3\varphi}{2}\right)\right)=2sin\left(\frac{\varphi}{2}\right)\left( cos\left(\frac{\pi+3\varphi}{2} \right)+isin\left( \frac{\pi+3\varphi}{2}\right)\right)[/math]
Consequently, if [imath]\varphi[/imath] satisfy the above condition, then [math]arg(z_1)=\frac{\pi+3\varphi}{2}[/math]
(c) If [imath]sin\left(\frac{\varphi}{2} \right)<0[/imath], that is [imath](4k+2)\pi<\varphi<(4k+4)\pi[/imath], [imath]k[/imath] any integer then [imath]\left| z_1\right|=-2sin(\frac{\varphi}{2})[/imath]
[math]z_1=2sin\left(\frac{\varphi}{2}\right)\left( -sin\left(\frac{3\varphi}{2} \right)+icos\left( \frac{3\varphi}{2}\right)\right)=-2sin\left(\frac{\varphi}{2}\right)\left( sin\left(\frac{3\varphi}{2} \right)-icos\left( \frac{3\varphi}{2}\right)\right)=-2sin\left(\frac{\varphi}{2}\right)\left( cos\left(\frac{3\pi+3\varphi}{2} \right)+isin\left( \frac{3\pi+3\varphi}{2}\right)\right)[/math]
Hence, if [imath]\varphi[/imath] satisfies the condition above, then [math]arg(z_1)=\frac{3\pi+3\varphi}{2}[/math]
I understand most of this derivation, but I’m having trouble fully grasping the step where the expression inside the parentheses is rewritten using the angle identities. Is there an easy way to see that
[math] sin\left(\frac{3\varphi}{2} \right)-icos\left( \frac{3\varphi}{2}\right)= cos\left(\frac{3\pi+3\varphi}{2} \right)+isin\left( \frac{3\pi+3\varphi}{2}\right)[/math]I can see that the result checks out using the addition formulas, but I don’t quite understand how to derive it on my own from the beginning.
Find the argument of the complex number [imath]z_1=z^2-z[/imath] if [imath]z=cos(\varphi)+isin(\varphi)[/imath].
The solution proceeds as follows:
[math]z_1=\left( cos(\varphi)+isin(\varphi)\right)^2-(cos(\varphi)+isin(\varphi))[/math][math]z_1=\left( cos(2\varphi)-cos(\varphi)\right)+i\left( sin(2\varphi)-sin(\varphi)\right)[/math][math]z_1=2sin\left(\frac{\varphi}{2}\right)\left( -sin\left(\frac{3\varphi}{2} \right)+icos\left( \frac{3\varphi}{2}\right)\right)[/math]
Thus the modulus is
[math]\left| z_1\right|=\sqrt{4sin^2\left(\frac{\varphi}{2}\right)\left(sin^2\left( \frac{3\varphi}{2}\right) + cos^2\left( \frac{3\varphi}{2}\right)\right)}=2 \left| sin\left(\frac{\varphi}{2}\right)\right|[/math]
In accordance with the definition of absolute value, we have to consider three cases:
(a) If [imath]sin\left(\frac{\varphi}{2} \right)=0[/imath], that is [imath]\varphi=2k\pi[/imath], [imath]k[/imath] is any integer, the argument of [imath]z_1[/imath] is not defined.
(b) If [imath]sin\left(\frac{\varphi}{2} \right)>0[/imath], which occurs when [imath]4\pi k<\varphi<(4k+2)\pi[/imath] then [imath]\left| z_1\right|=2sin\left(\frac{\varphi}{2} \right)[/imath] and the trigonometric form of the complex number [imath]z_1[/imath] is as follows:
[math]z_1=2sin\left(\frac{\varphi}{2}\right)\left( -sin\left(\frac{3\varphi}{2} \right)+icos\left( \frac{3\varphi}{2}\right)\right)=2sin\left(\frac{\varphi}{2}\right)\left( cos\left(\frac{\pi+3\varphi}{2} \right)+isin\left( \frac{\pi+3\varphi}{2}\right)\right)[/math]
Consequently, if [imath]\varphi[/imath] satisfy the above condition, then [math]arg(z_1)=\frac{\pi+3\varphi}{2}[/math]
(c) If [imath]sin\left(\frac{\varphi}{2} \right)<0[/imath], that is [imath](4k+2)\pi<\varphi<(4k+4)\pi[/imath], [imath]k[/imath] any integer then [imath]\left| z_1\right|=-2sin(\frac{\varphi}{2})[/imath]
[math]z_1=2sin\left(\frac{\varphi}{2}\right)\left( -sin\left(\frac{3\varphi}{2} \right)+icos\left( \frac{3\varphi}{2}\right)\right)=-2sin\left(\frac{\varphi}{2}\right)\left( sin\left(\frac{3\varphi}{2} \right)-icos\left( \frac{3\varphi}{2}\right)\right)=-2sin\left(\frac{\varphi}{2}\right)\left( cos\left(\frac{3\pi+3\varphi}{2} \right)+isin\left( \frac{3\pi+3\varphi}{2}\right)\right)[/math]
Hence, if [imath]\varphi[/imath] satisfies the condition above, then [math]arg(z_1)=\frac{3\pi+3\varphi}{2}[/math]
I understand most of this derivation, but I’m having trouble fully grasping the step where the expression inside the parentheses is rewritten using the angle identities. Is there an easy way to see that
[math] sin\left(\frac{3\varphi}{2} \right)-icos\left( \frac{3\varphi}{2}\right)= cos\left(\frac{3\pi+3\varphi}{2} \right)+isin\left( \frac{3\pi+3\varphi}{2}\right)[/math]I can see that the result checks out using the addition formulas, but I don’t quite understand how to derive it on my own from the beginning.