Hi, im trying to solve this problem for the defined sequence an. Find if exists supremum, infimum for the set A.
\(\displaystyle
\begin{array}{l}
Let{({a_n})_{n \in N}}\\
{a_n}: = 4 - \frac{9}{n}\\
A: = \{ {a_n}^2 - 3{a_n} - 10:n \in N\}
\end{array}
\)
I dont know how to start.
\(\displaystyle
\begin{array}{l}
Let{({a_n})_{n \in N}}\\
{a_n}: = 4 - \frac{9}{n}\\
A: = \{ {a_n}^2 - 3{a_n} - 10:n \in N\}
\end{array}
\)
I dont know how to start.