\(\displaystyle \displaystyle \int \frac{x^2+1}{(x^2-2x+2)^2} \, dx\)
\(\displaystyle \displaystyle \int \frac{x^2+1}{[(x^2-2x+1)+1]^2} \, dx\)
\(\displaystyle \displaystyle \int \frac{x^2+1}{[(x-1)^2+1]^2} \, dx\)
\(\displaystyle \displaystyle x-1 = \tan{t} \implies x = \tan{t} + 1 \implies dx = \sec^2{t} \, dt\)
\(\displaystyle \displaystyle \int \frac{(\tan{t}+1)^2+1}{(\tan^2{t}+1)^2} \cdot \sec^2{t} \, dt\)
\(\displaystyle \displaystyle \int \frac{\tan^2{t}+2\tan{t}+2}{(\sec^2{t})^2} \cdot \sec^2{t} \, dt\)
\(\displaystyle \displaystyle \int \frac{\tan^2{t}+2\tan{t}+2}{\sec^2{t}} \, dt\)
\(\displaystyle \displaystyle \int \sin^2{t} + 2\sin{t}\cos{t} + 2\cos^2{t} \, dt\)
\(\displaystyle \displaystyle \int \sin(2t) + \cos^2{t} + 1 \, dt\)
\(\displaystyle \displaystyle \int \sin(2t) + \frac{1+\cos(2t)}{2} + 1 \, dt\)
\(\displaystyle \displaystyle \int \sin(2t) + \frac{\cos(2t)}{2} + \frac{3}{2} \, dt\)
\(\displaystyle \displaystyle -\frac{\cos(2t)}{2} + \frac{\sin(2t)}{4} + \frac{3t}{2} + C\)
\(\displaystyle \displaystyle \tan{t} = x-1 \implies \sin{t} = \frac{x-1}{\sqrt{x^2-2x+2}} \implies \cos{t} = \frac{1}{\sqrt{x^2-2x+2}}\)
\(\displaystyle \displaystyle \cos(2t) = 2\cos^2{t}-1 = \frac{2}{x^2-2x+2} - 1\)
\(\displaystyle \displaystyle \sin(2t) = 2\sin{t}\cos{t} = \frac{2(x-1)}{x^2-2x+2}\)
\(\displaystyle \displaystyle t = \arctan(x-1)\)
so, after a little more grunt work algebra ...
\(\displaystyle \displaystyle \int \frac{x^2+1}{(x^2-2x+2)^2} \, dx = \frac{x-3}{2(x^2-2x+2)}+\frac{3}{2}\arctan(x-1)+C\)