Geometry: Points, Lines, and Planes

Refer to Figure 1.
5ce7f56f-5efe-4e31-82b9-a65158991a7a.PNG
Figure 1
Name the plane containing lines m and p.
Unless you failed to post the complete and exact wording of the question, there is absolutely no reason to think that lines m & p\displaystyle m~\&~p are in the same plane.
 
Unless you failed to post the complete and exact wording of the question, there is absolutely no reason to think that lines m & p\displaystyle m~\&~p are in the same plane.
No, that is the exact question.
 
Note: A plane is a flat surface made up of points. A plane is named by a capital script letter or by the letters naming three noncollinear points.
 
No, that is the exact question.
Then it is a mistake, misprint, or just incompetence, because there is nothing given that requires m & p\displaystyle m~\&~p to belong to a plane.
It is true that m & n\displaystyle m~\&~n must be in the same plane.
 
Then it is a mistake, misprint, or just incompetence, because there is nothing given that requires m & p\displaystyle m~\&~p to belong to a plane.
It is true that m & n\displaystyle m~\&~n must be in the same plane.
Yes, it didn’t look right to me.
 
Note: A plane is a flat surface made up of points. A plane is named by a capital script letter or by the letters naming three noncollinear points.
If you are now saying that all points are in plane K\displaystyle \bf K then it is truly a nonsense question.
 
I have no idea how to go about this question. Would points GFC work?
It appears that you are now saying that plane K\displaystyle \bf K in figure I contains all the given points.
If any plane contains two points of a line then that plane contains all of the line.
Therefore because {B,D,G,F}K\displaystyle \{B,D, G, F\}\subset\bf K then mpK\displaystyle m\cup p\subset\bf K.
 
It's important that you tell us the entire problem as given to you; that includes the list of options, if it is a multiple-choice problem.

I found this, contains the same question (#5): http://teachers.stjohns.k12.fl.us/jasper-k/files/2016/02/unit7-quiz-review-with-solutions.pdf

It's clear that all the points lie in the plane of the paper, so they are merely asking for a name of that plane.

K would be the best answer to give; but they are really asking, "Which of these is a valid name for the plane containing lines m and p?" There are many valid names; but the only one of the choices that works is GFC, since only that is a set of three non-collinear points in the plane (as you said in post #4).

This is an example of why I really dislike multiple-choice problems, unless they are written really well. Making it multiple-choice changes the very meaning of the problem! But this is also why you really must always include the choices when you ask about such a problem.
 
It's important that you tell us the entire problem as given to you; that includes the list of options, if it is a multiple-choice problem.

I found this, contains the same question (#5): http://teachers.stjohns.k12.fl.us/jasper-k/files/2016/02/unit7-quiz-review-with-solutions.pdf

It's clear that all the points lie in the plane of the paper, so they are merely asking for a name of that plane.

K would be the best answer to give; but they are really asking, "Which of these is a valid name for the plane containing lines m and p?" There are many valid names; but the only one of the choices that works is GFC, since only that is a set of three non-collinear points in the plane (as you said in post #4).

This is an example of why I really dislike multiple-choice problems, unless they are written really well. Making it multiple-choice changes the very meaning of the problem! But this is also why you really must always include the choices when you ask about such a problem.
Yes, I apologize! I will be sure to include the multiple-choice problems.
 
Top