Graphing log functions!?

ericaveronica

New member
Joined
Nov 11, 2005
Messages
1
Hi there. I need help! I need to know how to manually graph log functions. But not just the base 10 ones... I need to know how to graph logs of any base and how to find the intercepts and asymptotes. please help! :!:
 
Hello, ericaveronica!

I need to know how to <u>manually</u> graph log functions.
But not just the base 10 ones.
If you want to plot the points "by hand", you need the Base-change Formula: .logb(N)  =  log(N)log(b)\displaystyle \log_b(N) \;= \;\frac{\log(N)}{\log(b)}
. . The right side can use any base. .(I'll use base ten.)


<u>Example</u>: .y  =  log5(x)\displaystyle y\;=\;\log_5(x)

Some of the points are:

. . x=0.001:  y=log5(0.001)=log(0.001)log(5)=4.292\displaystyle x\,=\,0.001:\;y\,=\,\log_5(0.001)\,=\,\frac{\log(0.001)}{\log(5)}\,=\,-4.292

. . .x=0.01:  y=log5(0.01)=log(0.01)log(5)=2.861\displaystyle x\,=\,0.01:\;y\,=\,\log_5(0.01)\,=\,\frac{\log(0.01)}{\log(5)}\,=\,-2.861

. . . x=0.1:  y=log5(0.1)=log(0.1)log(5)=1.431\displaystyle x\,=\,0.1:\;y\,=\,\log_5(0.1)\,=\,\frac{\log(0.1)}{\log(5)}\,=\,-1.431

. . . . x=1:  y=log5(1)=log(1)log(5)=0\displaystyle x\,=\,1:\;y\,=\,\log_5(1)\,=\,\frac{\log(1)}{\log(5)}\,=\,0

. . . . x=2:  y=log5(2)=log(2)log(2)=0.431\displaystyle x\,=\,2:\;y\,=\,\log_5(2)\,=\,\frac{\log(2)}{\log(2)}\,=\,0.431

. . . . x=3:  y=log5(3)=log(3)log(5)=0.683\displaystyle x\,=\,3:\;y\,=\,\log_5(3)\,=\,\frac{\log(3)}{\log(5)}\,=\,0.683

. . . . x=4:  y=log5(4)=log(4)log(5)=0.861\displaystyle x\,=\,4:\;y\,=\,\log_5(4)\,=\,\frac{\log(4)}{\log(5)}\,=\,0.861

. . . .x=20:  y=log5(20)=log(20)log(5)=1.861\displaystyle x\,=\,20:\;y\,=\,\log_5(20)\,=\,\frac{\log(20)}{\log(5)}\,=\,1.861

. . . .x=50:  y=log5(50)=log(50)log(5)=2.431\displaystyle x\,=\,50:\;y\,=\,\log_5(50)\,=\,\frac{\log(50)}{\log(5)}\,=\,2.431


But you should do this only once.

You will find that <u>all</u> log functions of the form: y=logb(x)\displaystyle y\,=\,\log_b(x) .have the same graph.

Code:
        |                 *
        |            *
      --+--------*---------
        |     *  1
        |   *
        |
        | *
        |
        |*
        |
 
"You will find that all log functions of the form: y=logb(x)\displaystyle y = \log _b (x).have the same graph."
This is not the case!
That is true only if b>1. If 0<b<1 then the graph looks like:
log29ho.gif
 
Top