#### NICEKILLER

##### New member

- Joined
- Oct 11, 2017

- Messages
- 1

My problem is as follow:

I have an event assuming A. The probability that A occurs at time t is: p(t)= e^(-bt)*|sin(at)|. Where a,b are positive parameters

We divide the time in small step times let's say \delta t= 0.125, Then, we count how many time A occur for t =[0, infinity].

So my problem is to study the number of occurrence of A in the variation of the parameter a and b.

Which I can prove mathematically that for a lower value of b, A occurs more often and for the bigger value of a, A occurs more frequently.

I hope I was clear.

If anyone has any suggestion or idea about how could we do that.

Thank you.