help on derivative of triangular function (Dirac delta function)

smsow

New member
Joined
Jul 9, 2016
Messages
2
Hope someone can give me some pointers on how to get the 2nd order derivation of the following triangular function.

. . . . .T(x)={1x(N+1),x<1N+10,x>1N+1\displaystyle T(x)\, =\, \begin{cases}1\, -\, |x|\, (N\, +\, 1),&|x|\, <\, \dfrac{1}{N\, +\, 1} \\ 0,&|x|\, >\, \dfrac{1}{N\, +\, 1} \end{cases}

where N is a constant integer.

The solution is as follows:

. . . . .d2T(xxn)dx2=(N+1)[δ(xxn1)2δ(xxn)+δ(xxn+1)]\displaystyle \dfrac{d^2\, T(x\, -\, x_n)}{dx^2}\, =\, (N\, +\, 1)\, \Big[\,\delta\, \left(x\, -\, x_{n - 1}\right)\, -\, 2\, \delta\, \left(x\, -\, x_n\right)\, +\, \delta\, \left(x\, -\, x_{n + 1}\right)\, \Big]

where δ(x)\displaystyle \, \delta\, (x)\, is the Dirac delta function.

Thanks!!

The original problem can be found in the following book page 13
Title: Field Computation by Moment Methods
Author: R.F. Harrington
 

Attachments

  • Picture1.jpg
    Picture1.jpg
    9.2 KB · Views: 11
  • Picture2.jpg
    Picture2.jpg
    7.8 KB · Views: 11
  • Picture3.png
    Picture3.png
    3.4 KB · Views: 11
Last edited by a moderator:
Hope someone can give me some pointers on how to get the 2nd order derivation of the following triangular function.

. . . . .T(x)={1x(N+1),x<1N+10,x>1N+1\displaystyle T(x)\, =\, \begin{cases}1\, -\, |x|\, (N\, +\, 1),&|x|\, <\, \dfrac{1}{N\, +\, 1} \\ 0,&|x|\, >\, \dfrac{1}{N\, +\, 1} \end{cases}

where N is a constant integer.

The solution is as follows:

. . . . .d2T(xxn)dx2=(N+1)[δ(xxn1)2δ(xxn)+δ(xxn+1)]\displaystyle \dfrac{d^2\, T(x\, -\, x_n)}{dx^2}\, =\, (N\, +\, 1)\, \Big[\,\delta\, \left(x\, -\, x_{n - 1}\right)\, -\, 2\, \delta\, \left(x\, -\, x_n\right)\, +\, \delta\, \left(x\, -\, x_{n + 1}\right)\, \Big]

where δ(x)\displaystyle \, \delta\, (x)\, is the Dirac delta function.

Thanks!!

The original problem can be found in the following book page 13
Title: Field Computation by Moment Methods
Author: R.F. Harrington


d(x)dt = ??\displaystyle \displaystyle{\dfrac{d(|x|)}{dt} \ = \ ??}
 
Last edited by a moderator:
d(x)dt = ??\displaystyle \displaystyle{\dfrac{d(|x|)}{dt} \ = \ ??}
Thanks for the pointer. Here is some of my work out but it still not unable to get the solution in term of dirac delta function.

\(\displaystyle \mbox{Let }\, |x|, =\, \sqrt{\strut x^2\,}\)

dxdx=d(x2)12dx=12(x2)122x=xx\displaystyle \dfrac{d|x|}{dx}\, =\, \dfrac{d(x^2)^{\frac{1}{2}}}{dx}\, =\, \dfrac{1}{2}\, (x^2)^{-\frac{1}{2}}\, \cdot\, 2x\, =\, \dfrac{x}{|x|}

and

dxadx=d((xa)2)12dx=xaxa\displaystyle \dfrac{d|x\, -\, a|}{dx}\, =\, \dfrac{d\left(\, (x\, -\, a)^2\, \right)^{\frac{1}{2}}}{dx}\, =\, \dfrac{x\, -\, a}{|x\, -\, a|}

and

\(\displaystyle \mbox{So, if }\, T(x\, -\, x_n)\, =\, 1\, -\, |x\, -\, x_n|(N\, +\, 1)\)

\(\displaystyle \mbox{then }\, \dfrac{dT(x\, -\, x_n)}{dx}\, =\, \dfrac{d\left(1\, -\, |x\, -\, x_n|(N\, +\, 1)\right)}{dx}\, =\, \dfrac{-(N\, +\, 1)(x\, -\, x_n)}{|x\, -\, x_n|}\)

\(\displaystyle \mbox{and }\, \dfrac{d^2 T(x\, -\, x_n)}{dx^2}\, =\, \dfrac{d\left(\dfrac{-(N\, +\, 1)(x\, -\, x_n)}{|x\, -\, x_n|}\right)}{dx}\, =\, -(N\, +\, 1)\,\dfrac{d\left(\dfrac{x\, -\, x_n}{|x\, -\, x_n|}\right)}{dx}\)

. . . . .=(N+1)[(1)xxnxxxnxxnxxn2xn(xxn)xxn3]\displaystyle =\, -(N\, +\, 1)\left[\, \dfrac{(1)|x\, -\, x_n|\, -\, x\dfrac{x\, -\, x_n}{|x\, -\, x_n|}}{|x\, -\, x_n|^2}\, -\, \dfrac{x_n (x\, -\, x_n)}{|x\, -\, x_n|^3}\, \right]

. . . . .(N+1)[1xxnx(xxn)xxn3xn(xxn)xxn3]\displaystyle -(N\, +\, 1)\left[\, \dfrac{1}{|x\, -\, x_n|}\, -\, \dfrac{x(x\, -\, x_n)}{|x\, -\, x_n|^3}\, -\, \dfrac{x_n(x\, -\, x_n)}{|x\, -\, x_n|^3}\, \right]

and finally, this will lead to zero..... Not sure where goes wrong.... and the solution still not in term of dirac delta function. Hope to get some help from here. Thanks!
 

Attachments

  • Picture11.png
    Picture11.png
    1.9 KB · Views: 8
  • Picture12.png
    Picture12.png
    6.5 KB · Views: 3
  • Picture13.png
    Picture13.png
    6.3 KB · Views: 3
  • Picture14.png
    Picture14.png
    3.5 KB · Views: 3
  • Picture15.jpg
    Picture15.jpg
    9.6 KB · Views: 3
  • Picture16.jpg
    Picture16.jpg
    11.1 KB · Views: 3
  • Picture17.jpg
    Picture17.jpg
    11.1 KB · Views: 3
  • Picture18.jpg
    Picture18.jpg
    10.4 KB · Views: 3
Last edited by a moderator:
Top