dtd(∣x∣) = ??
Thanks for the pointer. Here is some of my work out but it still not unable to get the solution in term of dirac delta function.
\(\displaystyle \mbox{Let }\, |x|, =\, \sqrt{\strut x^2\,}\)
dxd∣x∣=dxd(x2)21=21(x2)−21⋅2x=∣x∣x
and
dxd∣x−a∣=dxd((x−a)2)21=∣x−a∣x−a
and
\(\displaystyle \mbox{So, if }\, T(x\, -\, x_n)\, =\, 1\, -\, |x\, -\, x_n|(N\, +\, 1)\)
\(\displaystyle \mbox{then }\, \dfrac{dT(x\, -\, x_n)}{dx}\, =\, \dfrac{d\left(1\, -\, |x\, -\, x_n|(N\, +\, 1)\right)}{dx}\, =\, \dfrac{-(N\, +\, 1)(x\, -\, x_n)}{|x\, -\, x_n|}\)
\(\displaystyle \mbox{and }\, \dfrac{d^2 T(x\, -\, x_n)}{dx^2}\, =\, \dfrac{d\left(\dfrac{-(N\, +\, 1)(x\, -\, x_n)}{|x\, -\, x_n|}\right)}{dx}\, =\, -(N\, +\, 1)\,\dfrac{d\left(\dfrac{x\, -\, x_n}{|x\, -\, x_n|}\right)}{dx}\)
. . . . .=−(N+1)⎣⎢⎢⎢⎡∣x−xn∣2(1)∣x−xn∣−x∣x−xn∣x−xn−∣x−xn∣3xn(x−xn)⎦⎥⎥⎥⎤
. . . . .−(N+1)[∣x−xn∣1−∣x−xn∣3x(x−xn)−∣x−xn∣3xn(x−xn)]
and finally, this will lead to zero..... Not sure where goes wrong.... and the solution still not in term of dirac delta function. Hope to get some help from here. Thanks!