Hope someone can give me some pointers on how to get the 2nd order derivation of the following triangular function.
. . . . .\(\displaystyle T(x)\, =\, \begin{cases}1\, -\, |x|\, (N\, +\, 1),&|x|\, <\, \dfrac{1}{N\, +\, 1} \\ 0,&|x|\, >\, \dfrac{1}{N\, +\, 1} \end{cases}\)
where N is a constant integer.
The solution is as follows:
. . . . .\(\displaystyle \dfrac{d^2\, T(x\, -\, x_n)}{dx^2}\, =\, (N\, +\, 1)\, \Big[\,\delta\, \left(x\, -\, x_{n - 1}\right)\, -\, 2\, \delta\, \left(x\, -\, x_n\right)\, +\, \delta\, \left(x\, -\, x_{n + 1}\right)\, \Big]\)
where \(\displaystyle \, \delta\, (x)\, \) is the Dirac delta function.
Thanks!!
The original problem can be found in the following book page 13
Title: Field Computation by Moment Methods
Author: R.F. Harrington
. . . . .\(\displaystyle T(x)\, =\, \begin{cases}1\, -\, |x|\, (N\, +\, 1),&|x|\, <\, \dfrac{1}{N\, +\, 1} \\ 0,&|x|\, >\, \dfrac{1}{N\, +\, 1} \end{cases}\)
where N is a constant integer.
The solution is as follows:
. . . . .\(\displaystyle \dfrac{d^2\, T(x\, -\, x_n)}{dx^2}\, =\, (N\, +\, 1)\, \Big[\,\delta\, \left(x\, -\, x_{n - 1}\right)\, -\, 2\, \delta\, \left(x\, -\, x_n\right)\, +\, \delta\, \left(x\, -\, x_{n + 1}\right)\, \Big]\)
where \(\displaystyle \, \delta\, (x)\, \) is the Dirac delta function.
Thanks!!
The original problem can be found in the following book page 13
Title: Field Computation by Moment Methods
Author: R.F. Harrington
Attachments
Last edited by a moderator: