help please!

hayood

New member
Joined
Feb 16, 2010
Messages
37
Let u, v, and w be nonzero vectors in 3-space with the same initial point, but such that no two of them are collinear. Show that
(a) u x (v x w) lies in the plane determined by v and w
(b) (u x v) x w lies in the plane determined by u and v
 
Hello, hayood!

Let u,v,w be nonzero vectors in 3-space with the same initial point,\displaystyle \text{Let }\vec u,\,\vec v,\,\vec w \text{ be nonzero vectors in 3-space with the same initial point,}
. . such that no two of them are collinear.\displaystyle \text{such that no two of them are collinear.}

Show that:\displaystyle \text{Show that:}

(a) u×(v×w) lies in the plane determined by v and w.\displaystyle \text{(a) }\:\vec u \times (\vec v \times \vec w)\,\text{ lies in the plane determined by }\vec v\text{ and }\vec w.

\(\displaystyle \text{(b) }\:(\vec u \times \vec v) \times \vec w\text{ lies in the plane determined by }\vec u\text{ and }\vec v.\)


Can it be this easy? . . .


Code:
          |
          |
    v x w |        * . . . . .
          |   w *         . 
          |  *          . 
          o  *  *  *  *
                 v

(v×w) is normal to the plane of v and w.\displaystyle (\vec v \times \vec w )\,\text{ is normal to the plane of }\vec v\text{ and }\vec w.

And: u×(v×w) is normal to the plane of u and (v×w).\displaystyle \text{And: }\:\vec u \times (\vec v \times \vec w)\,\text{ is normal to the plane of }\vec u\text{ and }(\vec v \times \vec w).

Hence: u×(v×w) is parallel to the plane of v and w.\displaystyle \text{Hence: }\:\vec u \times (\vec v \times \vec w)\,\text{ is }parallel\text{ to the plane of }\vec v\text{ and }\vec w.


Since all the vectors have the same inital point,\displaystyle \text{Since all the vectors have the same inital point,}

. . u×(v×w) lies in the plane of v and w.\displaystyle \vec u \times (\vec v \times \vec w)\,\text{ lies }in\text{ the plane of }\vec v\text{ and }\vec w.

 
Top