Help with solving log

justan4cat

New member
Joined
May 23, 2010
Messages
39
I'm in my last week of this online class. You guys have been sp helpful! I'm sorry if some of my questions were dumb questions, but I had nobody else to ask. Thanks for not poking fun. I have 4 problems left and I'm done with this course. This one, I'm a bit stuck on what to do first.
I know that log[sub:1a49q0jm]a[/sub:1a49q0jm]M + log[sub:1a49q0jm]a[/sub:1a49q0jm]N = log[sub:1a49q0jm]a[/sub:1a49q0jm] (MN) so...

Solve. Where appropriate, include approximations to the nearest thousandth. If no solution exists, state this.

log[sub:1a49q0jm]8[/sub:1a49q0jm] (x + 4) + log[sub:1a49q0jm]8[/sub:1a49q0jm] (x + 2) = log[sub:1a49q0jm]8[/sub:1a49q0jm]48

should my first step be to factor the left?

Log[sub:1a49q0jm]8[/sub:1a49q0jm] (x+4)(x+2) = log48/log8
 
justan4cat said:
I'm in my last week of this online class. You guys have been sp helpful! I'm sorry if some of my questions were dumb questions, but I had nobody else to ask. Thanks for not poking fun. I have 4 problems left and I'm done with this course. This one, I'm a bit stuck on what to do first.
I know that log[sub:2ryyc04p]a[/sub:2ryyc04p]M + log[sub:2ryyc04p]a[/sub:2ryyc04p]N = log[sub:2ryyc04p]a[/sub:2ryyc04p] (MN) so...

Solve. Where appropriate, include approximations to the nearest thousandth. If no solution exists, state this.

log[sub:2ryyc04p]8[/sub:2ryyc04p] (x + 4) + log[sub:2ryyc04p]8[/sub:2ryyc04p] (x + 2) = log[sub:2ryyc04p]8[/sub:2ryyc04p]48

should my first step be to factor the left?

Log[sub:2ryyc04p]8[/sub:2ryyc04p] (x+4)(x+2) = log48/log8Almost!!

log[sub:2ryyc04p]8[/sub:2ryyc04p] (x + 4)(x + 2) = log[sub:2ryyc04p]8[/sub:2ryyc04p] 48

Now...

if log[sub:2ryyc04p]b[/sub:2ryyc04p] a = log[sub:2ryyc04p]b[/sub:2ryyc04p] c, then a = c

Since

log[sub:2ryyc04p]8[/sub:2ryyc04p] (x + 4)(x + 2) = log[sub:2ryyc04p]8[/sub:2ryyc04p] 48

It must be true that

(x + 4)(x + 2) = 48

Solve that quadratic equation.....
 
I think this is right.


(x+4)(x+2) = 48
X[sup:3qsg5sil]2[/sup:3qsg5sil]+2x+4x+8=48
X[sup:3qsg5sil]2[/sup:3qsg5sil]+6x=40
X[sup:3qsg5sil]2[/sup:3qsg5sil]+6x+9=49
(x+3)[sup:3qsg5sil]2[/sup:3qsg5sil]=49
X+3=?49
X+3=7
X=4
 
justan4cat said:
I think this is right.


(x+4)(x+2) = 48
X[sup:t1hjxlgo]2[/sup:t1hjxlgo]+2x+4x+8=48
X[sup:t1hjxlgo]2[/sup:t1hjxlgo]+6x=40
X[sup:t1hjxlgo]2[/sup:t1hjxlgo]+6x+9=49
(x+3)[sup:t1hjxlgo]2[/sup:t1hjxlgo]=49
±(x+3) =?49 <<< You should get two values for 'x' - then you need check if both of those are valid.
X+3=7
X=4
 
Check:
x=4
Log[sub:eek:476a35z]8[/sub:eek:476a35z]8 + log[sub:eek:476a35z]8[/sub:eek:476a35z]6 = log[sub:eek:476a35z]8[/sub:eek:476a35z]48
1+log6/log8 = log48/log8
1.8617=1.8617
Or
x=-10
Log[sub:eek:476a35z]8[/sub:eek:476a35z]-6 + log[sub:eek:476a35z]8[/sub:eek:476a35z]-8 = log[sub:eek:476a35z]8[/sub:eek:476a35z]48
Log-6-1=log48/log8
Can’t do log of -6
Answer is X=4.
 
justan4cat said:
Check:
x=4
Log[sub:fays83fy]8[/sub:fays83fy]8 + log[sub:fays83fy]8[/sub:fays83fy]6 = log[sub:fays83fy]8[/sub:fays83fy]48
1+log6/log8 = log48/log8
1.8617=1.8617
Or
x=-10
Log[sub:fays83fy]8[/sub:fays83fy]-6 + log[sub:fays83fy]8[/sub:fays83fy]-8 = log[sub:fays83fy]8[/sub:fays83fy]48
Log-6-1=log48/log8
Can’t do log of -6
Answer is X=4. <<< Correct
 
Top