Yes, that is correct. An "x- intercept" is a point on the graph where the graph crosses ("intersects") the x-axis. There y= 0. If y= (x- 2)(x+ 5)= 0 then either x- 2= 0 or x+ 5= 0. If x- 2= 0 then x= 2. If x+ 5= 0 then x= -5. In either case y= 0 so the x-intercepts are (2, 0) and (-5, 0).
No, that is
not correct
A.
y=x2−9=(x−3)(x+3)=0. We have either x- 3= 0 so x= -3 or x+ 3= 0 so x= -3. The
two x-intercepts are (3, 0) and (-3, 0).
B.
y=x2−6x+9=(x−3)2=0. We must have x= 3. There is only one x-intercept.
C.
y=x2−5x+6=(x−3)(x−2)=0. We must have either x- 3= 0 so x= 3 or x- 2= 0 so x= 2. The
two x-intercepts are (3, 0) and (2, 0).
D.
y=x2+x−6=(x+3)(x−2)=0. We must have either x+ 3= 0 so x= -3 or x- 2= 0 so x= 2. The
two x-intercepts are (-3, 0) and (2, 0).
The correct answer is B.
Yes, that is correct.
A parabola opens upward if and only if its leading coefficient (the coefficient of
x2) is positive. That is true in A and C. How "narrow" a parabola appears depends upon how large the absolute value of the leading coefficient is. The larger the leading coefficient, the "narrower" the parabola is. |4|= 4 is larger than |-3|= 3 while |1|= 1 is not.