How to check these sequences generated by i.i.d random variables are martingales?

Which sequences - post those here using ASCII or LaTex, along with your attempts/thoughts.

Most of us are not willing to step into an unknown web-site .
 
Let {Yn}n1\displaystyle \{Y_n\}_{n\geq 1} be a sequence of independent, identically distributed random variables.

P=(Yi=1)=P(Yi=1)=12\displaystyle P=(Y_i=1)=P(Y_i=-1)=\frac12

Set S0=0\displaystyle S_0=0 and Sn=Y1+...+Yn\displaystyle S_n=Y_1+...+Y_n if n1\displaystyle n\geq 1

I want to check if the following sequences are martingales.

Mn(1)=eθSn(coshθ)n\displaystyle M_n^{(1)}=\frac {e^{\theta S_n}}{(\cosh{\theta})^n}

Mn(2)=k=1nsign(S(k1))Yk,n1,M0(2)=0\displaystyle M_n^{(2)}=\displaystyle\sum_{k=1}^n sign{(S_{(k-1)})} Y_k, n\geq 1,M_0^{(2)}=0

Mn(3)=Sn2n\displaystyle M_n^{(3)}=S_n^2-n

I have no idea to answer these questions. I think to answer these questions, one must Moment generating functions and Cumulants in detail.
 
In your first line you wrote:

P = (Yi = 1) = ..... Is that correct?

In your own words, what is a Martingale sequence?

What property you would need show to claim a sequence to be Martingale?
 
In your first line you wrote:

P = (Yi = 1) = ..... Is that correct?

In your own words, what is a Martingale sequence?

What property you would need show to claim a sequence to be Martingale?
P(Yi=1)=P(Yi=1)=12P(Y_i=1)=P(Y_i=-1)=\frac12 is correct.
 
Top