How to find the limit without L'hopital

yalam

New member
Joined
Mar 12, 2019
Messages
1
How to find the limit without L'hopital : lim x->0 ( (1+2X) - (1 + 3 x)^(2/3))/(x^2)
 
How to find the limit without L'hopital : lim x->0 ( (1+2X) - (1 + 3 x)^(2/3))/(x^2)
I haven't tried it yet, but the "traditional" way to handle a limit with a cube root like this is to make use of the fact that [MATH]a^3 - b^3 = (a - b)(a^2 + ab + b^2)[/MATH]. Do you see how this might be used in a similar way to conjugates with square roots?
 
How to find the limit without L'hopital : lim x->0 ( (1+2X) - (1 + 3 x)^(2/3))/(x^2)
That numerator becomes "user-friendly" if you would apply the binomial theorem to the respective portion of the numerator:

(1+3x)2/3 = 12/3 + (11!)(23)(1)1/3(3x) + (12!)(23)(13)(1)4/3(3x)2 + [only  terms  with  degree  higher  than  two] =\displaystyle (1 + 3x)^{2/3} \ = \ 1^{2/3} \ + \ (\tfrac{1}{1!})(\tfrac{2}{3})(1)^{-1/3}(3x) \ + \ (\tfrac{1}{2!})(\tfrac{2}{3})( \tfrac{-1}{3})(1)^{-4/3}(3x)^2 \ + \ [only \ \ terms \ \ with \ \ degree \ \ higher \ \ than \ \ two] \ =

1 + 2x x2 + [only  terms  with  degree  higher  than  two]\displaystyle 1 \ + \ 2x \ - x^2 \ + \ [only \ \ terms \ \ with \ \ degree \ \ higher \ \ than \ \ two]
 
Top