T tops New member Joined Apr 20, 2012 Messages 1 Apr 20, 2012 #1 1. 2xydx+(1+y)dy=0 ; y(2)=1 2. y'+y^2 sinx=0 ; y(0)=0 3. 2xdx-dy=x(xdy-2ydx) ; y(-3)=1 4. dy=x(2ydx-xdy) ; x=1 , y=4
1. 2xydx+(1+y)dy=0 ; y(2)=1 2. y'+y^2 sinx=0 ; y(0)=0 3. 2xdx-dy=x(xdy-2ydx) ; y(-3)=1 4. dy=x(2ydx-xdy) ; x=1 , y=4
tkhunny Moderator Staff member Joined Apr 12, 2005 Messages 11,325 Apr 20, 2012 #2 You should start by separating, since you know they are separable. Let's see what you get.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Apr 21, 2012 #3 Hello, tops! You've never done one of these? . . . Ever? I'll do the first one. \(\displaystyle (1)\;\;2xy\,dy + (1+y)dy \;=\; 0 \quad y(2) = 1 \) Click to expand... Separate variables: .[\(\displaystyle \frac{y+1}{y}\,dy \;=\;2x \,dx\) Integrate: .\(\displaystyle \displaystyle\int\left(1 + \tfrac{1}{y}\right)\,dy \;=\;\int 2x\,dx\) . . . . . . . . . . . . .\(\displaystyle y + \ln y \;=\;x^2 + C\) \(\displaystyle y(2) = 1\!:\;\; 1 + \ln 1 \:=\:2^2+C \quad\Rightarrow\quad C \,=\,-3\) \(\displaystyle \text{Therefore: }\;y + \ln y \;=\;x^2 - 3\)
Hello, tops! You've never done one of these? . . . Ever? I'll do the first one. \(\displaystyle (1)\;\;2xy\,dy + (1+y)dy \;=\; 0 \quad y(2) = 1 \) Click to expand... Separate variables: .[\(\displaystyle \frac{y+1}{y}\,dy \;=\;2x \,dx\) Integrate: .\(\displaystyle \displaystyle\int\left(1 + \tfrac{1}{y}\right)\,dy \;=\;\int 2x\,dx\) . . . . . . . . . . . . .\(\displaystyle y + \ln y \;=\;x^2 + C\) \(\displaystyle y(2) = 1\!:\;\; 1 + \ln 1 \:=\:2^2+C \quad\Rightarrow\quad C \,=\,-3\) \(\displaystyle \text{Therefore: }\;y + \ln y \;=\;x^2 - 3\)