How to solve linear mapping problem?

That's pretty straightforward, isn't it? I presume, since you are asked to do this problem, that you know what "eigenvectors" and "eigenvalues" are!

v\displaystyle \vec{v} is an "eigenvector" of f with "eigenvalue" λ\displaystyle \lambda if and only if f(v)=λv\displaystyle f(\vec{v})= \lambda\vec{v}.

So w=(1,1,2)\displaystyle \vec{w}= (1, 1, 2) is an eigenvector of f with eigenvalue λ\displaystyle \lambda if and only if f(w)=f((1,1,2))=[(1,1,2).(1,1,2)](1,1,2)+(1,1,2)=6(1,1,2)+(1,1,2)=(6,6,12)+(1,1,2)=(7,7,14)=λ(1,1,2)=(λ,λ,2λ)\displaystyle f(\vec{w})= f((1, 1, 2))= [(1, 1, 2).(1, 1, 2)](1, 1, 2)+ (1, 1, 2)= 6(1, 1, 2)+ (1, 1, 2)= (6, 6, 12)+ (1, 1, 2)= (7, 7, 14)= \lambda(1, 1, 2)= (\lambda, \lambda, 2\lambda).

Does there exist such a number, λ\displaystyle \lambda, and, if so, what is it?
 
The explanation is satisfying. 7.(1,1,2)
I am in trouble with this notation.
How should I understand from this notation that eigenvector and eigenvalues are asked?
And How did you understand w and v are eigenvectors?
and endomorphism? is it a function which is injective?
Thank you
 
The explanation is satisfying. 7.(1,1,2)
I am in trouble with this notation.
How should I understand from this notation that eigenvector and eigenvalues are asked?
The fact that choices (a) and (b) were
(a) w\displaystyle \vec{w} is an eigenvector of eigenvalue 7.
(b) w\displaystyle \vec{w} is an eigenvector of eigenvalue 6.

were pretty much giveaways that they were asking about eigenvectors!

And How did you understand w and v are eigenvectors?
I thought I'd answered that. f is give by f(v)=(vw)w+v\displaystyle f(\vec{v})= (\vec{v}\cdot\vec{w})\vec{w}+\vec{v} where w=(1,1,2)\displaystyle \vec{w}= (1, 1, 2)'

and then the problem asks whether w=(1,1,2)\displaystyle \vec{w}= (1, 1, 2) is an eigenvector with eigenvalue 6 or 7. Didn't that make you think "Oh 'eigenvector'! I should check the definition of 'eigenvector'!"? Replacing both v\displaystyle \vec{v} and w\displaystyle \vec{w} with (1, 1, 2) in the definition of f above (I did this calculation before) we get f((1,1,2))=((1,1,2)(1,1,2))(1,1,2)+(1,1,2)=(1+1+4)(1,1,2)+(1,1,2)=6(1,1,2)+(1,1,2)=7(1,1,2)\displaystyle f((1, 1, 2))= ((1, 1, 2)\cdot(1, 1, 2))(1, 1, 2)+ (1, 1, 2)= (1+ 1+ 4)(1, 1, 2)+ (1, 1, 2)= 6(1, 1, 2)+ (1, 1, 2)= 7(1, 1, 2).

That is, f(w)\displaystyle f(\vec{w}) is 7 times w\displaystyle \vec{w}. That is precisely the definition of "eigenvector with eigenvalue 7"!

and endomorphism? is it a function which is injective?
Thank you
Again, it is a matter of knowing the definitions! (Learning definitions is about the simplest thing you can do in mathematics but so many students don't!)

A function is an "endomorphism" is simply a function from a mathematical object (here the vector space R3\displaystyle R^3) to itself that "preserves the operations". That is f(u+v)=f(u)+f(v)\displaystyle f(\vec{u}+\vec{v})= f(\vec{u})+ f(\vec{v}) and f(av)=af(v)\displaystyle f(a\vec{v})=af(\vec{v}).

The definition of f is f(v)=[v(1,1,2)](1,1,2)+v\displaystyle f(\vec{v})= [\vec{v}\cdot(1, 1, 2)](1, 1, 2)+ \vec{v}. If we write v\displaystyle \vec{v} as (vx,vy,vz)\displaystyle (v_x, v_y, v_z) then f((vx,vy,vz)=(vx+vy+2vz)(1,1,2)+(vx,vy,vz)=(2vx+vy+2vz,vx+2vy+2vz,vx+vy+3vz)\displaystyle f((v_x, v_y, v_z)= (v_x+ v_y+ 2v_z)(1, 1, 2)+ (v_x, v_y, v_z)= (2v_x+ v_y+ 2v_z, v_x+ 2v_y+ 2v_z, v_x+ v_y+ 3v_z). And if u\displaystyle \vec{u} is (ux,uy,uz)\displaystyle (u_x, u_y, u_z) then f((ux,uy,uz)=(ux+uy+2uz)(1,1,2)+(ux,uy,uz)=(2ux+uy+2uz,ux+2uy+2uz,ux+uy+3uz)\displaystyle f((u_x, u_y, u_z)= (u_x+ u_y+ 2u_z)(1, 1, 2)+ (u_x, u_y, u_z)= (2u_x+ u_y+ 2u_z, u_x+ 2u_y+ 2u_z, u_x+ u_y+ 3u_z) and f(u+v)=f((ux+vx,uy+vy,uz+vz))=[(ux+vx,uy+vy,uz+vz)(1,1,2)](1,12)+(ux+vx,uy+vy,uz+vz)=((ux+vx)1+(ux+vx),(uy+vy)1+(ux+vx),(uz+vz)2+(uz+vz))=(2uz+2vx,2ux+2vx,3uz+3vz)\displaystyle f(\vec{u}+ \vec{v})=f((u_x+ v_x, u_y+ v_y, u_z+ v_z))= [(u_x+ v_x, u_y+ v_y, u_z+ v_z)\cdot(1, 1, 2)](1, 1 2)+ (u_x+ v_x, u_y+ v_y, u_z+ v_z)= ((u_x+ v_x)1+ (u_x+ v_x), (u_y+ v_y)1+ (u_x+ v_x), (u_z+ v_z)2+ (u_z+ v_z))= (2u_z+2v_x, 2u_x+ 2v_x, 3u_z+ 3v_z).

Now, is that the same as f(u)+f(v)=([u(1,1,2)](1,1,2)+u)+([v(1,1,2)](1,1,2)+v)=([ux+uy+2uz](1,1,2)+(ux,uy,uz)+[vx+vy+2vz](1,1,2)+(vx,vy,vz)=(2ux+uy+2uz,ux+2uy+3uz)+(2vx+vy+2vz,vx+2vy+2vz,vx+vy+3vz)\displaystyle f(\vec{u})+ f(\vec{v})= ([\vec{u}\cdot(1,1, 2)](1, 1, 2)+ \vec{u})+ ([\vec{v}\cdot(1, 1, 2)](1, 1, 2)+ \vec{v})= ([u_x+ u_y+ 2u_z](1, 1, 2)+ (u_x, u_y, u_z)+ [v_x+ v_y+ 2v_z](1, 1, 2)+ (v_x, v_y, v_z)= (2u_x+ u_y+ 2u_z, u_x+ 2u_y+ 3u_z)+ (2v_x+ v_y+ 2v_z, v_x+ 2v_y+ 2v_z, v_x+ v_y+ 3v_z)?

A straight forward, though tedious, calculation.

Similarly for f(av)=af(v)\displaystyle f(a\vec{v})= af(\vec{v}).
av=(avx,avy,avz)\displaystyle a\vec{v}= (av_x, av_y, av_z) so \(\displaystyle f(a\vec{v})= [(av_x, av_y, av_z)\cdot(1, 1, 2)](1, 1, 2)+ (av_x, av_y, av_z)= (av_x+ av_y+ 2av_z)(1, 1, 2)+ (av_x, av_y, av_z)= (2av_x+ av_y+ 2av_z, av_x+ 2av_z+ 2av_z, 2av_x+ 2av_u+ 5av_z)\(\displaystyle .

Is that the same as af(v)=a([(vx,vy,vz)(1,1,2)](1,1,2)+(vx,vy,vz)=a[(vx+vy+2vz)(1,1,2)+(vx,vy,vz)]=a[(2vx+vy+2vz,vx+2vy+2vz,vx+vy+5vz)]\displaystyle af(\vec{v})= a([(v_x, v_y, v_z)\cdot(1, 1, 2)](1, 1, 2)+ (v_x, v_y, v_z)= a[(v_x+ v_y+ 2v_z)(1, 1, 2)+ (v_x, v_y, v_z)]= a[(2v_x+ v_y+2v_z, v_x+ 2v_y+ 2v_z, v_x+ v_y+ 5v_z)]?

And what about "injective". Did you look up the definition of "injective"? A function from one vector space to another is "injective" (also called "one to one") if, whenever f(u)=f(v)\displaystyle f(\vec{u})= f(\vec{v}) then u=v\displaystyle \vec{u}= \vec{v}.

Again, let u=(ux,uy,uz)\displaystyle \vec{u}= (u_x, u_y, u_z) and v=(vx,vy,vz)\displaystyle \vec{v}= (v_x, v_y, v_z).

Then f(u)=[(ux,uy,uz)(1,1,2)](1,1,2)+(ux,uy,uz)=(2ux+uy+2uz,ux+2uy+2uz,ux+uy+5uz)\displaystyle f(\vec{u})= [(u_x, u_y, u_z)\cdot(1, 1, 2)](1, 1, 2)+ (u_x, u_y, u_z)= (2u_x+ u_y+2u_z, u_x+ 2u_y+2u_z, u_x+u_y+ 5u_z) and f(v)=[(vx,vy,vz)(1,1,2)](1,1,2)+(vx,vy,vz)=(2vx+vy+2vz,vx+2vy+2vz,vx+vy+5vz)\displaystyle f(\vec{v})= [(v_x, v_y, v_z)\cdot(1, 1, 2)](1, 1, 2)+ (v_x, v_y, v_z)= (2v_x+ v_y+2v_z, v_x+ 2v_y+2v_z, v_x+v_y+ 5v_z).

So f(u)=f(v)\displaystyle f(\vec{u})= f(\vec{v}) means that (2ux+uy+2uz,ux+2uy+2uz,ux+uy+5uz)=(2vx+vy+2vz,vx+2vy+2vz,vx+vy+5vz)\displaystyle (2u_x+ u_y+2u_z, u_x+ 2u_y+2u_z, u_x+u_y+ 5u_z)= (2v_x+ v_y+2v_z, v_x+ 2v_y+2v_z, v_x+v_y+ 5v_z) so that 2ux+uy+2uz=2vx+vy+2vz\displaystyle 2u_x+ u_y+ 2u_z= 2v_x+ v_y+ 2v_z, ux+2uy+2uz=vx+2vy+2vz\displaystyle u_x+ 2u_y+ 2u_z= v_x+ 2v_y+ 2v_z, and ux+uy+5uz=vx+vy+5vz\displaystyle u_x+ u_y+ 5u_z= v_x+ v_y+ 5v_z.

You can solve those three equations for ux\displaystyle u_x, uY\displaystyle u_Y, and uz\displaystyle u_z in terms of vx\displaystyle v_x, vy\displaystyle v_y, and vz\displaystyle v_z and so show that [vex]u_x= v_x\), uy=vy\displaystyle u_y= v_y, and uz=vz\displaystyle u_z= v_z so that u=v\displaystyle \vec{u}= \vec{v}.\)
 
Top