Hyperbolic Inverse: sinh(x)

Trenters4325

Junior Member
Joined
Apr 8, 2006
Messages
122
How can you find the inverse of the hyperbolic function sinh(x) by by switching the xs and ys.
 
Is the function "y = sinh(x)"? Then either use the inverse hyperbolic sine, or else convert the hyperbolic sine to its exponential form, and invert that.

Eliz.
 
My question is how do you get the inverse after you convert it to exponential form and switch the variables?
 
Hello, Trenters4325!

This is not a pretty problem . . .

How can you find the inverse of \(\displaystyle \,\sinh(x)\,\) by by switching the \(\displaystyle x\)'s and \(\displaystyle y\)'s?
\(\displaystyle \text{We have: }\L\,y\:=\:\frac{e^x\,-\,e^{-x}}{2}\)

\(\displaystyle \text{Switch variables: }\L\,x\:=\:\frac{e^y\,-\,e^{-y}}{2}\)


\(\displaystyle \text{Now we solve for }y:\L\;\;\frac{e^y\,-\,e^{-y}}{2}\;=\;x\)

\(\displaystyle \text{Multiply both sides by }\L 2e^y:\;\;e^{2y}\,-\,1\;=\;2xe^y\)

\(\displaystyle \text{We have: }\L\,e^{2y}\,-\,2xe^y\,-\,1\;=\;0\)

\(\displaystyle \text{This is a }quadratic:\L\;(e^y)^2\,-\,2x(e^y)\,-\,1 \;= \;0\)

\(\displaystyle \text{Quadratic Formula: }\L\,e^y \;= \;\frac{-(-2x)\,\pm\,\sqrt{(-2x)^2\,-\,4(1)(-1)}}{2(1)} \;= \;\frac{2x\,\pm\,\sqrt{4x^2\,+\,4}}{2}\)

. . \(\displaystyle \L e^y\;=\;\frac{2x\,\pm\,\sqrt{4(x^2\,+\,1)}}{2}\;=\;\frac{2x\,\pm2\sqrt{x^2\,+\,1}}{2} \;= \;x\,\pm\,\sqrt{x^2\,+\,1}\)


\(\displaystyle \text{Hence: }\L\:y \;= \;\ln(x\,\pm\,\sqrt{x^2\,+\,1})\)

. . \(\displaystyle \text{But }\L\,x\,-\,\sqrt{x^2+1}\,\text{ is negative.}\)


\(\displaystyle \text{Therefore: }\L\:y \;=\;\ln(x\,+\,\sqrt{x^2\,+\,1})\)
 
Top