I have posted the solution but have no clue were the 2 comes from.
\(\displaystyle \begin{align} D_x y\, &=\, (x\, -\, 5)\, D_x\, \sqrt{\strut x\, +\, 2\,}\, +\, \left(\sqrt{\strut x\, +\, 2\,}\right)\, D_x\, (x\, -\, 5)
\\ \\ &=\, (x\, -\, 5)\, \left(\dfrac{1}{2}\right)\, (x\, +\, 2)^{-\frac{1}{2}}\, (1)\, +\, (x\, +\, 2)^{\frac{1}{2}}\, (1)
\\ \\ &=\, \dfrac{1}{2}\, (x\, -\, 5)\, (x\, +\, 2)^{-\frac{1}{2}}\, +\, (x\, +\, 2)^{\frac{1}{2}}
\\ \\ &=\, \dfrac{1}{2}\, (x\, +\, 2)^{-\frac{1}{2}}\, \bigg[(x\, -\, 5)\, +\, \color{red}{\large{2}}\, (x\, +\, 2)\bigg]
\\ \\ &=\, \dfrac{1}{2}\, (x\, +\, 2)^{-\frac{1}{2}}\, (3x\, -\, 1) \end{align}\)
I [highlighted] the 2 that is in question
Thankls
\(\displaystyle \begin{align} D_x y\, &=\, (x\, -\, 5)\, D_x\, \sqrt{\strut x\, +\, 2\,}\, +\, \left(\sqrt{\strut x\, +\, 2\,}\right)\, D_x\, (x\, -\, 5)
\\ \\ &=\, (x\, -\, 5)\, \left(\dfrac{1}{2}\right)\, (x\, +\, 2)^{-\frac{1}{2}}\, (1)\, +\, (x\, +\, 2)^{\frac{1}{2}}\, (1)
\\ \\ &=\, \dfrac{1}{2}\, (x\, -\, 5)\, (x\, +\, 2)^{-\frac{1}{2}}\, +\, (x\, +\, 2)^{\frac{1}{2}}
\\ \\ &=\, \dfrac{1}{2}\, (x\, +\, 2)^{-\frac{1}{2}}\, \bigg[(x\, -\, 5)\, +\, \color{red}{\large{2}}\, (x\, +\, 2)\bigg]
\\ \\ &=\, \dfrac{1}{2}\, (x\, +\, 2)^{-\frac{1}{2}}\, (3x\, -\, 1) \end{align}\)
I [highlighted] the 2 that is in question
Thankls
Last edited by a moderator: