I am trying to find the derivative of (x-5)sqr(x+2)

qazwsx

New member
Joined
Jun 2, 2016
Messages
3
I have posted the solution but have no clue were the 2 comes from.



\(\displaystyle \begin{align} D_x y\, &=\, (x\, -\, 5)\, D_x\, \sqrt{\strut x\, +\, 2\,}\, +\, \left(\sqrt{\strut x\, +\, 2\,}\right)\, D_x\, (x\, -\, 5)

\\ \\ &=\, (x\, -\, 5)\, \left(\dfrac{1}{2}\right)\, (x\, +\, 2)^{-\frac{1}{2}}\, (1)\, +\, (x\, +\, 2)^{\frac{1}{2}}\, (1)

\\ \\ &=\, \dfrac{1}{2}\, (x\, -\, 5)\, (x\, +\, 2)^{-\frac{1}{2}}\, +\, (x\, +\, 2)^{\frac{1}{2}}

\\ \\ &=\, \dfrac{1}{2}\, (x\, +\, 2)^{-\frac{1}{2}}\, \bigg[(x\, -\, 5)\, +\, \color{red}{\large{2}}\, (x\, +\, 2)\bigg]

\\ \\ &=\, \dfrac{1}{2}\, (x\, +\, 2)^{-\frac{1}{2}}\, (3x\, -\, 1) \end{align}\)



I [highlighted] the 2 that is in question

Thankls
 
Last edited by a moderator:
I have posted the solution but have no clue were the 2 comes from.



\(\displaystyle \begin{align} D_x y\, &=\, (x\, -\, 5)\, D_x\, \sqrt{\strut x\, +\, 2\,}\, +\, \left(\sqrt{\strut x\, +\, 2\,}\right)\, D_x\, (x\, -\, 5)

\\ \\ &=\, (x\, -\, 5)\, \left(\dfrac{1}{2}\right)\, (x\, +\, 2)^{-\frac{1}{2}}\, (1)\, +\, (x\, +\, 2)^{\frac{1}{2}}\, (1)

\\ \\ &=\, \dfrac{1}{2}\, (x\, -\, 5)\, (x\, +\, 2)^{-\frac{1}{2}}\, +\, (x\, +\, 2)^{\frac{1}{2}}

\\ \\ &=\, \dfrac{1}{2}\, (x\, +\, 2)^{-\frac{1}{2}}\, \bigg[(x\, -\, 5)\, +\, \color{red}{\large{2}}\, (x\, +\, 2)\bigg]

\\ \\ &=\, \dfrac{1}{2}\, (x\, +\, 2)^{-\frac{1}{2}}\, (3x\, -\, 1) \end{align}\)
Well, what did you get when you factored the negative-1/2-power radical out of both terms? You started with the basic algebra:

. . . . .\(\displaystyle \dfrac{1}{2}\, (x\, -\, 5)\, (x\, +\, 2)^{-\frac{1}{2}}\, +\, (x\, +\, 2)^{\frac{1}{2}}\, =\, \dfrac{1}{2}\, (x\, -\, 5)\, \dfrac{1}{\sqrt{\strut x\, +\, 2\,}}\, +\, \dfrac{x\, +\, 2}{\sqrt{\strut x\, +\, 2\,}}\, =\, ...\)

And... then what?

Please reply showing all of your steps so far. Thank you! ;)
 
why is (x+2)^1/2 in the denominator in your exmple. If that was the case I could multiply by the conjugate but that doesnt seem correct to me.
 
I have posted the solution but have no clue were the 2 comes from.



\(\displaystyle \begin{align} D_x y\, &=\, (x\, -\, 5)\, D_x\, \sqrt{\strut x\, +\, 2\,}\, +\, \left(\sqrt{\strut x\, +\, 2\,}\right)\, D_x\, (x\, -\, 5)

\\ \\ &=\, (x\, -\, 5)\, \left(\dfrac{1}{2}\right)\, (x\, +\, 2)^{-\frac{1}{2}}\, (1)\, +\, (x\, +\, 2)^{\frac{1}{2}}\, (1)

\\ \\ &=\, \dfrac{1}{2}\, (x\, -\, 5)\, (x\, +\, 2)^{-\frac{1}{2}}\, +\, \color{red}{\large{1}}\,(x\, +\, 2)^{\frac{1}{2}}

\\ \\ &=\, \dfrac{1}{2}\, (x\, +\, 2)^{-\frac{1}{2}}\, \bigg[(x\, -\, 5)\, +\, \color{red}{\large{2}}\, (x\, +\, 2)\bigg]

\\ \\ &=\, \dfrac{1}{2}\, (x\, +\, 2)^{-\frac{1}{2}}\, (3x\, -\, 1) \end{align}\)



I [highlighted] the 2 that is in question

Thankls
The line before - you have a silent '1'. When you try to factor out ½ from that you get 2.
 
Top