I have some integrals to solve for later. But the thing is, my math knowledge is meager, so if you could help me out I would be grateful
\(\displaystyle a)\, \lim_{x\, \rightarrow\, \infty}\, \left(\, \dfrac{2x\, +\, k}{2x\, -\, b}\, \right)^{kx + b}\)
\(\displaystyle b)\, \lim_{x\, \rightarrow\, \infty}\, \left(\, \sqrt[3]{\strut x^3\, +\, 7x\,}\, -\, x\, \right)\)
\(\displaystyle c)\, \int\, \dfrac{x\, (1\, -\, x)}{x^2\, +\, 1}\, dx\)
\(\displaystyle d)\, \int\, \left[\, x^2\, \arctan(x^3\, +\, 7)\, \right]\, dx\)
\(\displaystyle e)\, \int_0^{\infty}\, \cos(2x)\, dx\)
\(\displaystyle f)\, \int_{-\infty}^{+\infty}\, \dfrac{1}{a^2\, +\, x^2}\, dx\)
\(\displaystyle a)\, \lim_{x\, \rightarrow\, \infty}\, \left(\, \dfrac{2x\, +\, k}{2x\, -\, b}\, \right)^{kx + b}\)
\(\displaystyle b)\, \lim_{x\, \rightarrow\, \infty}\, \left(\, \sqrt[3]{\strut x^3\, +\, 7x\,}\, -\, x\, \right)\)
\(\displaystyle c)\, \int\, \dfrac{x\, (1\, -\, x)}{x^2\, +\, 1}\, dx\)
\(\displaystyle d)\, \int\, \left[\, x^2\, \arctan(x^3\, +\, 7)\, \right]\, dx\)
\(\displaystyle e)\, \int_0^{\infty}\, \cos(2x)\, dx\)
\(\displaystyle f)\, \int_{-\infty}^{+\infty}\, \dfrac{1}{a^2\, +\, x^2}\, dx\)
Attachments
Last edited by a moderator: