Identity Help!

gabby

New member
Joined
Dec 1, 2011
Messages
2
I need to prove that :

2(tanx-cotx)
tan2x-cot2x

is equal to:

sin2x




Using identities of course. I've done this problem over and over and can't prove it!
 
What I've gotten so far

2(tanx-cotx)
tan2x-cot2x ->


2(sinx-cosx)
cosx sinx
sin2x - cos2x
cos2x sin2x ->

2(sin2x-cos2x)
sinxcosx
sin4x - cos4x

sin2xcos2x ->


flipped the denominator and multiplied:


2(sin2x-cos2x)(sinxcosx)
(sin4x-cos4x) ->



sin2x(sin2x-cos2x)

(sin4x-cos4x)



Aaaand i don't see how that would work. Am I doing something wrong??
 
So starting from where you stopped:

sin(2x)[sin2(x)cos2(x)]sin4(x)cos4(x)\displaystyle \displaystyle \frac{sin(2x)[sin^2(x)-cos^2(x)]}{sin^4(x)-cos^4(x)}

Then the denominator is just the difference of two squares so:

sin(2x)[sin2(x)cos2(x)][sin2(x)cos2(x)][sin2(x)+cos2(x)]\displaystyle \displaystyle \frac{sin(2x)[sin^2(x)-cos^2(x)]}{[sin^2(x)-cos^2(x)][sin^2(x)+cos^2(x)]}

sin(2x)[sin2(x)cos2(x)][sin2(x)cos2(x)](1)\displaystyle \displaystyle \frac{sin(2x)[sin^2(x)-cos^2(x)]}{[sin^2(x)-cos^2(x)](1)}

Then the sin2(x)cos2(x)\displaystyle \displaystyle sin^2(x)-cos^2(x) will cancel leaving you with sin(2x)\displaystyle \displaystyle sin(2x)
 
Hello, gabby!

2(tanxcotx)tan2 ⁣xcot2 ⁣x  =  2(sinxcosxcosxsinx)sin2xcos2xcos2 ⁣xsin2 ⁣x  =  2(sin2 ⁣xcos2 ⁣xsinxcosxsin4 ⁣xcos4 ⁣xsin2 ⁣xcos2 ⁣x\displaystyle \dfrac{2(\tan x - \cot x)}{\tan^2\!x - \cot^2\!x} \;=\;\dfrac{2\left(\dfrac{\sin x}{\cos x} - \dfrac{\cos x}{\sin x}\right)}{\dfrac{\sin^2x}{\cos^2x} - \dfrac{\cos^2\!x}{\sin^2\!x}} \;=\;\frac{\dfrac{2(\sin^2\!x-\cos^2\!x}{\sin x\cos x}}{\dfrac{\sin^4\!x - \cos^4\!x}{\sin^2\!x\cos^2\!x}}


Flipped the denominator and multiplied: 2(sin2 ⁣xcos2 ⁣x)sinxcosxsin2 ⁣xcos2 ⁣xsin4 ⁣xcos4 ⁣x\displaystyle \text{Flipped the denominator and multiplied: }\:\dfrac{2(\sin^2\!x - \cos^2\!x)}{\sin x\cos x} \cdot \dfrac{\sin^2\!x\cos^2\!x}{\sin^4\!x - \cos^4\!x}

. . =  2sinxcosx(sin2 ⁣xcos2 ⁣x)cos4 ⁣xcos4 ⁣x  =  sin2x(sin2 ⁣xcos2 ⁣x)sin4 ⁣xcos4 ⁣x\displaystyle =\;\dfrac{2\sin x\cos x(\sin^2\!x - \cos^2\!x)}{\cos^4\!x-\cos^4\!x} \;=\;\dfrac{\sin2x(\sin^2\!x - \cos^2\!x)}{\sin^4\!x - \cos^4\!x}


Aaaand i don't see how that would work. Am I doing something wrong? . No!

Factor the denominator: sin2x(sin2 ⁣xcos2 ⁣x)(sin2 ⁣xcos2 ⁣x)(sin2 ⁣x+cos2 ⁣x)  =\displaystyle \text{Factor the denominator: }\:\dfrac{\sin2x\,(\sin^2\!x - \cos^2\!x)}{(\sin^2\!x - \cos^2\!x)\,(\sin^2\!x + \cos^2\!x)} \;= .sin2xsin2 ⁣x+cos2 ⁣xThis is 1  =  sin2x\displaystyle \dfrac{\sin2x}{\underbrace{\sin^2\!x+\cos^2\!x}_{\text{This is 1}}} \;=\;\sin2x
Edit: too slow . . . again!
 
I need to prove that :

2(tanx-cotx)
tan2x-cot2x

is equal to:

sin2x

Using identities of course. I've done this problem over and over and can't prove it!

Another way...

2[tan(x)cot(x)]tan2(x)cot2(x)\displaystyle \dfrac{2[tan(x)-cot(x)]}{tan^2(x) - cot^2(x)}

= 2[tan(x)cot(x)][tan(x)cot(x)][tan(x)+cot(x)]\displaystyle = \ \dfrac{2[tan(x)-cot(x)]}{[tan(x) - cot(x)][tan(x) + cot(x)]}

= 2tan(x)+cot(x)\displaystyle = \ \dfrac{2}{tan(x) + cot(x)}

= 2sin(x)cos(x)+cos(x)sin(x)\displaystyle = \ \dfrac{2}{\frac{sin(x)}{cos(x)} + \frac{cos(x)}{sin(x)}}

= 2sin(x)cos(x)sin2(x)+cos2(x)\displaystyle = \ \dfrac{2\cdot sin(x)\cdot cos(x)}{sin^2(x) + cos^2(x)}

= sin(2x)\displaystyle = \ sin(2x)
 
Ahhh, so many roads that lead to the same destination.

I love tutotring this subject to my pre-calculus students. Identities is, without a doubt, the one subject when I hear this comment the most:

"When am I ever going to need to use this stuff in real life?" :p
 
Top