Image of a complex valued function: Let f : C \ {-1} -> C \ {1}, A = {z in C | R(z) > 0}, and...

Ozma

Junior Member
Joined
Oct 14, 2020
Messages
83
Let f:C{1}C{1}f:\mathbb{C} \setminus \{-1\} \to \mathbb{C} \setminus \{1\}, let A={zC  (z)>0}A=\{z\in\mathbb{C} \ | \ \Re(z) >0\} and let D={zC such that z<1}D=\{z\in\mathbb{C} \ \text{such that} \ |z| <1\}. Prove that ff maps AA in DD.

My work: let zAz \in A be arbitrary. Letting z=x+iyz=x+iy, it is:
f(z)=z1z+1=z1z+1=(x1)2+y2(x+1)2+y2=x22x+1+y2x2+2x+1+y2|f(z)|=\left|\frac{z-1}{z+1}\right|=\frac{|z-1|}{|z+1|}=\frac{\sqrt{(x-1)^2+y^2}}{\sqrt{(x+1)^2+y^2}}=\frac{\sqrt{x^2-2x+1+y^2}}{\sqrt{x^2+2x+1+y^2}}Since zAz \in A, x>0x>0 and so 2x<2x-2x<2x. Using the facts that the square root is increasing and that the denominator of the latter fraction is positive, we have:
x22x+1+y2x2+2x+1+y2<x2+2x+1+y2x2+2x+1+y2=1\frac{\sqrt{x^2-2x+1+y^2}}{\sqrt{x^2+2x+1+y^2}}<\frac{\sqrt{x^2+2x+1+y^2}}{\sqrt{x^2+2x+1+y^2}}=1So, f(z)<1|f(z)|<1; hence, f(A)Df(A) \subseteq D. Is this correct?
 
Looks good to me. It would be easier to understand if the problem statement included f(z)=z1z+1f(z) = \frac{z-1}{z+1}.
 
@blamocur: Thank you! I forgot the most imporant information :oops: yes, the function law is f(z)=z1z+1f(z)=\frac{z-1}{z+1}.
 
Top