The answer to this is \(\displaystyle \ln 3\)
\(\displaystyle \int_{-\infty}^{-2} \dfrac{2 dx}{x^{2} - 1} \)
\(\displaystyle x = \sec\theta d\theta \)
\(\displaystyle dx = \sec\theta\tan\theta d\theta \)
\(\displaystyle sec^{2} - 1 = \tan^{2}\theta d\theta \)
\(\displaystyle \int \dfrac{2\sec\theta\tan\theta}{\tan^{2}\theta} \)
\(\displaystyle \int \dfrac{2\sec\theta}{\tan\theta} \)
\(\displaystyle \int 2\sec\theta(\cot\theta) \)
\(\displaystyle = (\ln|\sec\theta + \tan\theta|)(\ln|\sin\theta|) + C\)
Now put in terms of x values.
\(\displaystyle \sec\theta = \dfrac{x}{1}\)
\(\displaystyle 2 \ln |\dfrac{x}{1} + \dfrac{x^{2} - 1}{1}| * \ln|\dfrac{x^{2} - 1}{x}|\) evaluated at upper bound \(\displaystyle -2\) and lower bound \(\displaystyle -\infty\)
\(\displaystyle \int_{-\infty}^{-2} \dfrac{2 dx}{x^{2} - 1} \)
\(\displaystyle x = \sec\theta d\theta \)
\(\displaystyle dx = \sec\theta\tan\theta d\theta \)
\(\displaystyle sec^{2} - 1 = \tan^{2}\theta d\theta \)
\(\displaystyle \int \dfrac{2\sec\theta\tan\theta}{\tan^{2}\theta} \)
\(\displaystyle \int \dfrac{2\sec\theta}{\tan\theta} \)
\(\displaystyle \int 2\sec\theta(\cot\theta) \)
\(\displaystyle = (\ln|\sec\theta + \tan\theta|)(\ln|\sin\theta|) + C\)
Now put in terms of x values.
\(\displaystyle \sec\theta = \dfrac{x}{1}\)
\(\displaystyle 2 \ln |\dfrac{x}{1} + \dfrac{x^{2} - 1}{1}| * \ln|\dfrac{x^{2} - 1}{x}|\) evaluated at upper bound \(\displaystyle -2\) and lower bound \(\displaystyle -\infty\)
Last edited: