Pretty sure, you need partial fractions for this one.
\(\displaystyle \int_{2}^{\infty} \dfrac{2 dv}{v^{2} - v}\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{(v)(v - 1)}\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{(v)(v - 1)} = \dfrac{A}{v} + \dfrac{B}{v - 1}\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{1} = A(v - 1) + B(v)\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{1} = Av - A + Bv\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{1} = - A + Av + Bv\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{1} = - A + v(A + B)\)
\(\displaystyle 2= -A\)
\(\displaystyle 0 = A + B\)
Subsitiuting
\(\displaystyle 2= -A\)
\(\displaystyle 0 = (-2) + B\)
so
\(\displaystyle B = 2\) while \(\displaystyle A = -2\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 dv}{v^{2} - v} = \int_{2}^{\infty} \dfrac{-2}{v} + \dfrac{2}{v - 1}\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 dv}{v^{2} - v} = -2\ln|v| + 2\ln|v - 1|\) evaluated at 2 (lower bound) and infinity (upper bound)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 dv}{v^{2} - v}\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{(v)(v - 1)}\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{(v)(v - 1)} = \dfrac{A}{v} + \dfrac{B}{v - 1}\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{1} = A(v - 1) + B(v)\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{1} = Av - A + Bv\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{1} = - A + Av + Bv\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 }{1} = - A + v(A + B)\)
\(\displaystyle 2= -A\)
\(\displaystyle 0 = A + B\)
Subsitiuting
\(\displaystyle 2= -A\)
\(\displaystyle 0 = (-2) + B\)
so
\(\displaystyle B = 2\) while \(\displaystyle A = -2\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 dv}{v^{2} - v} = \int_{2}^{\infty} \dfrac{-2}{v} + \dfrac{2}{v - 1}\)
\(\displaystyle \int_{2}^{\infty} \dfrac{2 dv}{v^{2} - v} = -2\ln|v| + 2\ln|v - 1|\) evaluated at 2 (lower bound) and infinity (upper bound)
Last edited: