What does
\(\displaystyle \epsilon\)
\(\displaystyle 1 + \epsilon\)
\(\displaystyle 1 - \epsilon\)
\(\displaystyle 1 + \delta\)
mean in these situations? Goal is not to solve, but just explain notation
a.
\(\displaystyle \int_{1}^{2} \dfrac{dx}{\sqrt{x - 1}}\)
discontinuity at \(\displaystyle x = 1\)
\(\displaystyle \lim \epsilon \rightarrow 0^{+} \int_{1 + \epsilon}^{2} \dfrac{dx}{\sqrt{x - 1}}\)
b.
\(\displaystyle \int_{1}^{0} x \ln x dx\)
discontinuity at \(\displaystyle x = 0\)
\(\displaystyle \lim \epsilon \rightarrow 0^{+} \int_{\epsilon}^{1} x \ln x dx\)
c.
\(\displaystyle \int_{0}^{2} \dfrac{dx}{(x -1)^{2}}\)
discontinuity at \(\displaystyle x = 1\)
\(\displaystyle \lim \epsilon \rightarrow 0^{+} \int_{0}^{1 - \epsilon} \dfrac{dx}{(x - 1)^{2}} + \lim \delta \rightarrow 0+ \int_{1 + \delta}^{2} \dfrac{dx}{(x - 1)^{2}}\)

\(\displaystyle \epsilon\)
\(\displaystyle 1 + \epsilon\)
\(\displaystyle 1 - \epsilon\)
\(\displaystyle 1 + \delta\)
mean in these situations? Goal is not to solve, but just explain notation
a.
\(\displaystyle \int_{1}^{2} \dfrac{dx}{\sqrt{x - 1}}\)
discontinuity at \(\displaystyle x = 1\)
\(\displaystyle \lim \epsilon \rightarrow 0^{+} \int_{1 + \epsilon}^{2} \dfrac{dx}{\sqrt{x - 1}}\)
b.
\(\displaystyle \int_{1}^{0} x \ln x dx\)
discontinuity at \(\displaystyle x = 0\)
\(\displaystyle \lim \epsilon \rightarrow 0^{+} \int_{\epsilon}^{1} x \ln x dx\)
c.
\(\displaystyle \int_{0}^{2} \dfrac{dx}{(x -1)^{2}}\)
discontinuity at \(\displaystyle x = 1\)
\(\displaystyle \lim \epsilon \rightarrow 0^{+} \int_{0}^{1 - \epsilon} \dfrac{dx}{(x - 1)^{2}} + \lim \delta \rightarrow 0+ \int_{1 + \delta}^{2} \dfrac{dx}{(x - 1)^{2}}\)
Last edited:
