From what I can see you have the proper integrals
\(\displaystyle \int_1^2 \sqrt{2x} dx + \int_2^4 \frac{x^2}{2} dx\)
=\(\displaystyle \sqrt{2}\int_1^2 \sqrt{x} dx + \frac{1}{2} \int_2^4 x^2 dx\)
=\(\displaystyle \sqrt{2}\, \dfrac{2}{3}\, x^{\frac{3}{2}}|_1^2\, +\, \dfrac{1}{2} \dfrac{1}{3} x^3|_2^4\)
=\(\displaystyle \dfrac{2\sqrt{2}}{3}\, x^{\frac{3}{2}}|_1^2\, +\, \dfrac{1}{6}\, x^3|_2^4\)
=\(\displaystyle \dfrac{2\sqrt{2}}{3}\, (2\sqrt{2} - 1)\, +\, \dfrac{1}{6}\, (64\, -\, 8)\)
=\(\displaystyle \dfrac{1}{3}\, (8\, -\, 2\sqrt{2})\, +\, \dfrac{1}{6}\, (56)\)
=\(\displaystyle \dfrac{1}{3}\, (8\, -\, 2\sqrt{2})\, +\, \dfrac{1}{3}\, (28)\)
=\(\displaystyle -\, 2\sqrt{2})\, +\, \dfrac{1}{3}\, (8 + 28)\)
=\(\displaystyle \dfrac{1}{3}\, (36)\, -\, \dfrac{2\,\sqrt{2}}{3}\)
=\(\displaystyle 12\, -\, \dfrac{2\,\sqrt{2}}{3}\)
~