Q quazzi New member Joined Jan 24, 2007 Messages 3 Jan 24, 2007 #1 Can't get this (tan(x/4))^5dx problem, looks like it would use the power reducing formula but get even more screwes up. help appreciated.
Can't get this (tan(x/4))^5dx problem, looks like it would use the power reducing formula but get even more screwes up. help appreciated.
pka Elite Member Joined Jan 29, 2005 Messages 11,978 Jan 24, 2007 #2 \(\displaystyle \begin{array}{rcl} \tan ^5 (u) & = & \left( {\sec ^2 (u) - 1} \right)^2 \tan (u) \\ & = & \left( {\sec ^4 (u) - 2\sec ^2 (u) + 1} \right)\tan (u) \\ \end{array}\) The last expression is easy to intergrate.
\(\displaystyle \begin{array}{rcl} \tan ^5 (u) & = & \left( {\sec ^2 (u) - 1} \right)^2 \tan (u) \\ & = & \left( {\sec ^4 (u) - 2\sec ^2 (u) + 1} \right)\tan (u) \\ \end{array}\) The last expression is easy to intergrate.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Jan 24, 2007 #3 Re: Integrate tan^5(x/4)dx with trig identities and substitu Hello, quazzi! \(\displaystyle \L\int\tan^5\left(\frac{x}{4}\right)\,dx\) Click to expand... I would do it like this . . . Let \(\displaystyle \theta\,=\,\frac{x}{4}\) \(\displaystyle \tan^5\theta \;=\;\tan^4\theta\cdot\tan\theta\) . . . . . .\(\displaystyle = \;\left(\tan^2\theta\right)^2\tan\theta\) . . . . . .\(\displaystyle = \;\left(\sec^2\theta\,-\,1\right)^2\tan\theta\) . . . . . .\(\displaystyle = \;\left(\sec^4\theta\,-\,2\sec^2\theta\,+\,1\right)\tan\theta\) . . . . . .\(\displaystyle = \;\sec^4\theta\cdot\tan\theta\,-\,2\sec^2\theta\cdot\tan\theta\,+\,\tan\theta\\\) pka did all this . . . now I'll complete the solution. We have: \(\displaystyle \:\L\int\sec^4\theta\cdot\tan\theta\,d\theta \:-\:2\int\sec^2\theta\cdot\tan\theta\,d\theta \,+\,\int\tan\theta\,d\theta\) For the first integral, we have: \(\displaystyle \L\:\int\sec^3\theta(\sec\theta\cdot\tan\theta\,d\theta)\) Let \(\displaystyle u \:=\:\sec\theta\) For the second integral, we have: \(\displaystyle \L\:\int\tan\theta(\sec^2\theta\,d\theta)\) Let \(\displaystyle u \:=\:\tan\theta\) For the third integral, a formula: \(\displaystyle \L\:\int\tan\theta\,d\theta\:=\:-\ln|\cos\theta|\,+\,C\)
Re: Integrate tan^5(x/4)dx with trig identities and substitu Hello, quazzi! \(\displaystyle \L\int\tan^5\left(\frac{x}{4}\right)\,dx\) Click to expand... I would do it like this . . . Let \(\displaystyle \theta\,=\,\frac{x}{4}\) \(\displaystyle \tan^5\theta \;=\;\tan^4\theta\cdot\tan\theta\) . . . . . .\(\displaystyle = \;\left(\tan^2\theta\right)^2\tan\theta\) . . . . . .\(\displaystyle = \;\left(\sec^2\theta\,-\,1\right)^2\tan\theta\) . . . . . .\(\displaystyle = \;\left(\sec^4\theta\,-\,2\sec^2\theta\,+\,1\right)\tan\theta\) . . . . . .\(\displaystyle = \;\sec^4\theta\cdot\tan\theta\,-\,2\sec^2\theta\cdot\tan\theta\,+\,\tan\theta\\\) pka did all this . . . now I'll complete the solution. We have: \(\displaystyle \:\L\int\sec^4\theta\cdot\tan\theta\,d\theta \:-\:2\int\sec^2\theta\cdot\tan\theta\,d\theta \,+\,\int\tan\theta\,d\theta\) For the first integral, we have: \(\displaystyle \L\:\int\sec^3\theta(\sec\theta\cdot\tan\theta\,d\theta)\) Let \(\displaystyle u \:=\:\sec\theta\) For the second integral, we have: \(\displaystyle \L\:\int\tan\theta(\sec^2\theta\,d\theta)\) Let \(\displaystyle u \:=\:\tan\theta\) For the third integral, a formula: \(\displaystyle \L\:\int\tan\theta\,d\theta\:=\:-\ln|\cos\theta|\,+\,C\)