M Mel Mitch New member Joined Jul 19, 2009 Messages 39 Jul 19, 2009 #1 I'm not getting this out.......a little guidance pleaseeeeeeeeeeeeeeeeeeee Integrate with repect to x: 1) x^(1/2)+ 1/x^(1/2) 2) [x^(1/2) - x]^2
I'm not getting this out.......a little guidance pleaseeeeeeeeeeeeeeeeeeee Integrate with repect to x: 1) x^(1/2)+ 1/x^(1/2) 2) [x^(1/2) - x]^2
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Jul 19, 2009 #2 Hello, Mel Mitch! How about using a little algebra . . . \(\displaystyle \text{Integrate:}\) \(\displaystyle 1)\;\;\int\left(x^{\frac{1}{2}}+ \frac{1}{x^{\frac{1}{2}}}\right)\,dx\) \(\displaystyle 2)\;\;\int\left(x^{\frac{1}{2}} - x\right)\!^2\,dx\) Click to expand... \(\displaystyle \text{The first integral is: }\;\int\left(x^{\frac{1}{2}} + x^{-\frac{1}{2}}\right)\,dx\) \(\displaystyle \text{The second is: }\;\int\left(x^{\frac{1}{2}}-x\right)\!^2\,dx \;=\;\int\left(x - 2x^{\frac{3}{2}} + x^2\right)\,dx\) \(\displaystyle \text{Got it?}\)
Hello, Mel Mitch! How about using a little algebra . . . \(\displaystyle \text{Integrate:}\) \(\displaystyle 1)\;\;\int\left(x^{\frac{1}{2}}+ \frac{1}{x^{\frac{1}{2}}}\right)\,dx\) \(\displaystyle 2)\;\;\int\left(x^{\frac{1}{2}} - x\right)\!^2\,dx\) Click to expand... \(\displaystyle \text{The first integral is: }\;\int\left(x^{\frac{1}{2}} + x^{-\frac{1}{2}}\right)\,dx\) \(\displaystyle \text{The second is: }\;\int\left(x^{\frac{1}{2}}-x\right)\!^2\,dx \;=\;\int\left(x - 2x^{\frac{3}{2}} + x^2\right)\,dx\) \(\displaystyle \text{Got it?}\)
M Mel Mitch New member Joined Jul 19, 2009 Messages 39 Jul 20, 2009 #3 Thank you Soroban.....got out the first one out ....will work on the second later..... again thanks