markraz
Full Member
- Joined
- Feb 19, 2014
- Messages
- 338
Hi,
I'm trying calculate a limit (doing an Infinite series root test )
\(\displaystyle \Large\lim_{n \to \infty}( \frac{2}{n^\frac{5}{n}})\)
\(\displaystyle \Large\lim_{n \to \infty}( \frac{2}{n^\frac{5}{n}})\) => \(\displaystyle \Large\lim_{x \to \infty} \frac{2}{ e^{\frac{5}{x} ln(x)} }\)
(Work on just Denominator for clarity)
\(\displaystyle \Large\lim_{x \to \infty} e^{\frac{5}{x} ln(x)}\)
__________________________________________________________________________________________________________________
\(\displaystyle \Large\lim_{x \to \infty} \Large e^{\frac{5 ln(x)}{x}} \) do I do L'Hôpital's rule here with the \(\displaystyle \Large {\frac{5 ln(x)}{x}} \)?
\(\displaystyle \Large{\frac{5 ln(x)}{x}} \) => L'Hôpital's = \(\displaystyle \Large {5 (\frac {\frac{1}{x}} {1})} \) = \(\displaystyle \Large5 {\frac{1} {\infty}} \)= (5 * 0) = 0 ????
\(\displaystyle \Large\lim_{x \to \infty} e^0\) = 1
__________________________________________________________________________________________________________________
finally put original back solved Denominator with Numerator.
\(\displaystyle \Large\frac{2}{e^0}\) = \(\displaystyle \Large\frac{2}{1}\) = 2
is the L'Hôpital's approach valid?? or is there a more efficient /correct way to solve ?? \(\displaystyle \Large\lim_{n \to \infty}( \frac{2}{n^\frac{5}{n}})=2\)
what approach is optimal?
Thanks
I'm trying calculate a limit (doing an Infinite series root test )
\(\displaystyle \Large\lim_{n \to \infty}( \frac{2}{n^\frac{5}{n}})\)
\(\displaystyle \Large\lim_{n \to \infty}( \frac{2}{n^\frac{5}{n}})\) => \(\displaystyle \Large\lim_{x \to \infty} \frac{2}{ e^{\frac{5}{x} ln(x)} }\)
(Work on just Denominator for clarity)
\(\displaystyle \Large\lim_{x \to \infty} e^{\frac{5}{x} ln(x)}\)
__________________________________________________________________________________________________________________
\(\displaystyle \Large\lim_{x \to \infty} \Large e^{\frac{5 ln(x)}{x}} \) do I do L'Hôpital's rule here with the \(\displaystyle \Large {\frac{5 ln(x)}{x}} \)?
\(\displaystyle \Large{\frac{5 ln(x)}{x}} \) => L'Hôpital's = \(\displaystyle \Large {5 (\frac {\frac{1}{x}} {1})} \) = \(\displaystyle \Large5 {\frac{1} {\infty}} \)= (5 * 0) = 0 ????
\(\displaystyle \Large\lim_{x \to \infty} e^0\) = 1
__________________________________________________________________________________________________________________
finally put original back solved Denominator with Numerator.
\(\displaystyle \Large\frac{2}{e^0}\) = \(\displaystyle \Large\frac{2}{1}\) = 2
is the L'Hôpital's approach valid?? or is there a more efficient /correct way to solve ?? \(\displaystyle \Large\lim_{n \to \infty}( \frac{2}{n^\frac{5}{n}})=2\)
what approach is optimal?
Thanks
Last edited: