Limit

limx1exp{cot(πx)log(sin(πx)+1)}=limx1exp{cos(πx)sin(πx)log(sin(πx)+1)}=limx1exp{cos(πx)}direct sublimx1exp{log(sin(πx)+1)sin(πx)}L’Hopital\lim_{x \to 1}\exp\left\{\cot(\pi x)\log(\sin(\pi x)+1)\right\}=\\ \lim_{x \to 1}\exp\left\{\frac{\cos(\pi x)}{\sin(\pi x)}\log(\sin(\pi x)+1)\right\}=\\ \underbrace{\lim_{x \to 1}\exp\{\cos(\pi x)\}}_{\text{direct sub}}\cdot \underbrace{ \lim_{x \to 1}\exp\left\{\frac{\log(\sin(\pi x)+1)}{\sin(\pi x)}\right\}}_{\text{L'Hopital}}
 
Let y=limx1[1+sin(πx)]cot(πx)\displaystyle y = \lim_{x \to 1} [1+\sin(\pi x)]^{\cot(\pi x)}

lny=limx1ln([1+sin(πx)]cot(πx))\displaystyle \ln{y} = \lim_{x \to 1} \ln\bigg([1+\sin(\pi x)]^{\cot(\pi x)} \bigg)

lny=limx1ln[1+sin(πx)]tan(πx)\displaystyle \ln{y} = \lim_{x \to 1} \dfrac{\ln[1+\sin(\pi x)]}{\tan(\pi x)}

now try applying L'Hopital
 
limx1exp{cot(πx)log(sin(πx)+1)}=limx1exp{cos(πx)sin(πx)log(sin(πx)+1)}=limx1exp{cos(πx)}direct sublimx1exp{log(sin(πx)+1)sin(πx)}L’Hopital\lim_{x \to 1}\exp\left\{\cot(\pi x)\log(\sin(\pi x)+1)\right\}=\\ \lim_{x \to 1}\exp\left\{\frac{\cos(\pi x)}{\sin(\pi x)}\log(\sin(\pi x)+1)\right\}=\\ \underbrace{\lim_{x \to 1}\exp\{\cos(\pi x)\}}_{\text{direct sub}}\cdot \underbrace{ \lim_{x \to 1}\exp\left\{\frac{\log(\sin(\pi x)+1)}{\sin(\pi x)}\right\}}_{\text{L'Hopital}}
I am confused about direct sub. How did you get that.
 
Let y=limx1[1+sin(πx)]cot(πx)\displaystyle y = \lim_{x \to 1} [1+\sin(\pi x)]^{\cot(\pi x)}

lny=limx1ln([1+sin(πx)]cot(πx))\displaystyle \ln{y} = \lim_{x \to 1} \ln\bigg([1+\sin(\pi x)]^{\cot(\pi x)} \bigg)

lny=limx1ln[1+sin(πx)]tan(πx)\displaystyle \ln{y} = \lim_{x \to 1} \dfrac{\ln[1+\sin(\pi x)]}{\tan(\pi x)}

now try applying L'Hopital
I don't understand how you got the third row.
 
I don't understand how you got the third row.
lny=limx1ln[1+sin(πx)]cot(πx)\displaystyle \ln{y} = \lim_{x \to 1} \ln[1 + \sin(\pi x)]^{\cot(\pi x)}

lny=limx1cot(πx)ln[1+sin(πx)]\displaystyle \ln{y} = \lim_{x \to 1} \cot(\pi x) \cdot \ln[1 + \sin(\pi x)]

lny=limx11tan(πx)ln[1+sin(πx)]\displaystyle \ln{y} = \lim_{x \to 1} \dfrac{1}{\tan(\pi x)} \cdot \ln[1 + \sin(\pi x)]

...
 
lny=limx1ln[1+sin(πx)]cot(πx)\displaystyle \ln{y} = \lim_{x \to 1} \ln[1 + \sin(\pi x)]^{\cot(\pi x)}

lny=limx1cot(πx)ln[1+sin(πx)]\displaystyle \ln{y} = \lim_{x \to 1} \cot(\pi x) \cdot \ln[1 + \sin(\pi x)]

lny=limx11tan(πx)ln[1+sin(πx)]\displaystyle \ln{y} = \lim_{x \to 1} \dfrac{1}{\tan(\pi x)} \cdot \ln[1 + \sin(\pi x)]

...
How did you get lny?
 
Top