There is no reason to complicate matters.
If
0<r<1 then
0<rn+1<rn<1 i.e. If
0<r<1 then
rn forms a decreasing sequence and has limit
0.
\(\begin{gathered}
{S_N} = \sum\limits_{n = 0}^N {a{r^n}} = a + ar + a{r^2} + \cdots + a{r^N} \hfill \\
r{S_N} = ar + a{r^2} + \cdots + a{r^N} + a{r^{N + 1}} \hfill \\
{S_N} - r{S_N} = a + ar + a{r^2} + \cdots + a{r^{N + 1}} \hfill \\
{S_N} = \frac{{a - {r^{N + 1}}}}{{1 - r}}\quad \mathop {\lim }\limits_{N \to \infty } {S_N} = \frac{a}{{1 - r}} \hfill \\ \end{gathered} \)
So in #40 what is the answer?