Linear Algebra - Finding linear maps

a12

New member
Joined
Nov 26, 2014
Messages
1
Find a linear map that satisfies the stated condition,

a linear map ψ1: Mat2x2(ℚ) → ℚ2[t] such that ψ1(m1), ψ1(m2), ψ1(m3), ψ1(m4) span 2[t]

Thankyou!
 
ℚ is the set of rational numbers? and m1=[1000]\displaystyle m_1= \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}, m2=[0100]\displaystyle m_2= \begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix}, m3=[0010]\displaystyle m_3= \begin{bmatrix}0 & 0 \\ 1 & 0\end{bmatrix}, m4=[0001]\displaystyle m_4= \begin{bmatrix}0 & 0 \\ 0 & 1\end{bmatrix}?

So you are looking for a linear transformation, ψ1\displaystyle \psi_1, from the space of all 2 by 2 matrices with rational entries such that ψ1(m1)\displaystyle \psi_1(m_1), ψ1(m2)\displaystyle \psi_1(m_2), ψ1(m3)\displaystyle \psi_1(m_3), and ψ1(m4)\displaystyle \psi_1(m_4) span the set of second degree polynomials with rational coefficients?

Since such a matrix can be written [abcd]\displaystyle \begin{bmatrix}a & b \\ c & d \end{bmatrix}=am1+bm2+cm3+dm4\displaystyle = am_1+ bm_2+ cm_3+ dm_4 where a, b, c, and d are rational numbers, one perfectly good answer would be the linear function ψ1(a,b,c,d)=ax2+bx+c\displaystyle \psi_1(a, b, c, d)= ax^2+ bx+ c.
 
Last edited:
Top