K kidia New member Joined Apr 11, 2006 Messages 27 Apr 9, 2007 #1 Any idea in this one please,Let T:R^3----R^3 be a linear transformation defined by T(X)=AX,where A= | 1 2 4 | | 2 3 5 | |-1-3-7| Find an equation relating b1,b2 and b3 so that a column vector |b1| |b2| |b3| will lie in the range of T
Any idea in this one please,Let T:R^3----R^3 be a linear transformation defined by T(X)=AX,where A= | 1 2 4 | | 2 3 5 | |-1-3-7| Find an equation relating b1,b2 and b3 so that a column vector |b1| |b2| |b3| will lie in the range of T
pka Elite Member Joined Jan 29, 2005 Messages 11,978 Apr 9, 2007 #2 Multiply: \(\displaystyle \L\left[ {\begin{array}{rrr} 1 & 2 & 4 \\ 2 & 3 & 5 \\ { - 1} & { - 3} & { - 7} \\ \end{array}} \right]\left[ {\begin{array}{c} {b_1 } \\ {b_2 } \\ {b_3 } \\ \end{array}} \right]\)
Multiply: \(\displaystyle \L\left[ {\begin{array}{rrr} 1 & 2 & 4 \\ 2 & 3 & 5 \\ { - 1} & { - 3} & { - 7} \\ \end{array}} \right]\left[ {\begin{array}{c} {b_1 } \\ {b_2 } \\ {b_3 } \\ \end{array}} \right]\)