ln Diff Example - # 4

Jason76

Senior Member
Joined
Oct 19, 2012
Messages
1,180
y=x5x8+4\displaystyle y = \sqrt{\dfrac{x-5}{x^{8} + 4}}

y=(x5x8+4)1/2\displaystyle y = (\dfrac{x-5}{x^{8} + 4})^{1/2}

ln(y)=ln[(x5x8+4)1/2]\displaystyle \ln(y) = \ln[(\dfrac{x-5}{x^{8} + 4})^{1/2}]

ln(y)=12ln[(x5x8+4)]\displaystyle \ln(y) = \dfrac{1}{2}\ln[(\dfrac{x - 5}{x^{8} + 4})]

ln(y)=12ln[(x5)]12ln[(x8+4)]\displaystyle \ln(y) = \dfrac{1}{2}\ln[(x - 5)] - \dfrac{1}{2} \ln[(x^{8} + 4)] :confused:
 
Last edited:
y=x5x8+4\displaystyle y = \sqrt{\dfrac{x-5}{x^{8} + 4}}

y=(x5x8+4)1/2\displaystyle y = (\dfrac{x-5}{x^{8} + 4})^{1/2}

ln(y)=ln[(x5x8+4)1/2]\displaystyle \ln(y) = \ln[(\dfrac{x-5}{x^{8} + 4})^{1/2}].............. why ln? ...............use product/quotient rule and chain rule.

ln(y)=12ln[(x5x8+4)]\displaystyle \ln(y) = \dfrac{1}{2}\ln[(\dfrac{x - 5}{x^{8} + 4})]

ln(y)=12ln[(x5)]12ln[(x8+4)]\displaystyle \ln(y) = \dfrac{1}{2}\ln[(x - 5)] - \dfrac{1}{2} \ln[(x^{8} + 4)] :confused:
.
 
While, as Suhotosh Kahn said, it is not necessary to use "logarithmic differentiation", you certainly can.

y=(x5x8+4)1/2\displaystyle y= \left(\dfrac{x- 5}{x^8+ 4}\right)^{1/2}
ln(y)=ln(x5x8+4)1/2=12ln(x5x8+4)\displaystyle ln(y)= \ln\left(\dfrac{x- 5}{x^8+ 4}\right)^{1/2}= \dfrac{1}{2}ln\left(\dfrac{x- 5}{x^8+ 4}\right)
ln(y)=12ln(x5)12ln(x8+4)\displaystyle ln(y)= \dfrac{1}{2}ln(x- 5)- \dfrac{1}{2}ln(x^8+ 4)

Now differentiate: (ln(y))=yy\displaystyle (ln(y))'= \dfrac{y'}{y}, (ln(x5))=1x5\displaystyle (ln(x-5))'= \dfrac{1}{x- 5} and (ln(x8+4))=8x7x8+4\displaystyle (ln(x^8+ 4))'= \dfrac{8x^7}{x^8+ 4} (chain rule: derivative of x8+4\displaystyle x^8+ 4 is 8x7\displaystyle 8x^7)

So yy=12(x5)4x7x8+4\displaystyle \dfrac{y'}{y}= \dfrac{1}{2(x- 5)}- \dfrac{4x^7}{x^8+ 4}\
y=y(12(x5)4x7x8+4)\displaystyle y'= y\left(\dfrac{1}{2(x- 5)}- \dfrac{4x^7}{x^8+ 4}\right)

y=x5x8+4(12(x5)4x7x8+4)\displaystyle y'= \sqrt{\dfrac{x- 5}{x^8+ 4}}\left(\dfrac{1}{2(x- 5)}- \dfrac{4x^7}{x^8+ 4}\right).
 
Top