\(\displaystyle f(x) = \dfrac{5}{\ln(x)}\)
\(\displaystyle f'(x) = \dfrac{\ln x (0) - 5 (\dfrac{1}{x})}{[\ln(x)]^{2}}\) - using quotient rule \(\displaystyle \dfrac{g(f') - f(g')}{g^{2}}\) given \(\displaystyle \dfrac{f}{g}\)
\(\displaystyle f'(x) = \dfrac{0 - \dfrac{5}{x}}{[\ln(x)]^{2}}\)
\(\displaystyle f'(x) = \dfrac{\ln x (0) - 5 (\dfrac{1}{x})}{[\ln(x)]^{2}}\) - using quotient rule \(\displaystyle \dfrac{g(f') - f(g')}{g^{2}}\) given \(\displaystyle \dfrac{f}{g}\)
\(\displaystyle f'(x) = \dfrac{0 - \dfrac{5}{x}}{[\ln(x)]^{2}}\)