K Kanjiru New member Joined Oct 16, 2005 Messages 1 Oct 16, 2005 #1 I understand the basic log functions, but I don't understand how to do these problems, help would be greately appreciated...thanx. 1)2^(logx)=4 2)5e^(x)=e^(3x=+1)
I understand the basic log functions, but I don't understand how to do these problems, help would be greately appreciated...thanx. 1)2^(logx)=4 2)5e^(x)=e^(3x=+1)
pka Elite Member Joined Jan 29, 2005 Messages 11,978 Oct 16, 2005 #2 The equation 2<sup>n</sup>=4 has a solution n=2. So that 2<sup>log(x)</sup>=4 gives log(x)=2. What is the solution ?
The equation 2<sup>n</sup>=4 has a solution n=2. So that 2<sup>log(x)</sup>=4 gives log(x)=2. What is the solution ?
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Oct 17, 2005 #3 Hello, Kanjiru! 1) 2<sup>log x</sup> = 4 . Click to expand... Since 4 = 2<sup>2</sup>, we have: .2<sup>log x</sup> .= .2<sup>2</sup> Equating exponents: .log x .= .2 . ---> .x .= .10<sup>2</sup> .= .100 2) 5e<sup>x</sup> = e<sup>3x+1</sup> . Click to expand... We have: .e<sup>3x+1</sup> .= .5e<sup>x</sup> Divide by e<sup>x</sup>: . e<sup>2x+1</sup> .= .5 Then: .2x + 1 .= .ln(5) . . . . . . . . .2x .= .ln(5) - 1 . . . . . . . . . . . . . . .ln(5) - 1 . . . . . . . . . x . = . ----------- . ≈ . 0.3047 . . . . . . . . . . . . . . . . . 2
Hello, Kanjiru! 1) 2<sup>log x</sup> = 4 . Click to expand... Since 4 = 2<sup>2</sup>, we have: .2<sup>log x</sup> .= .2<sup>2</sup> Equating exponents: .log x .= .2 . ---> .x .= .10<sup>2</sup> .= .100 2) 5e<sup>x</sup> = e<sup>3x+1</sup> . Click to expand... We have: .e<sup>3x+1</sup> .= .5e<sup>x</sup> Divide by e<sup>x</sup>: . e<sup>2x+1</sup> .= .5 Then: .2x + 1 .= .ln(5) . . . . . . . . .2x .= .ln(5) - 1 . . . . . . . . . . . . . . .ln(5) - 1 . . . . . . . . . x . = . ----------- . ≈ . 0.3047 . . . . . . . . . . . . . . . . . 2