C currypuff New member Joined Jan 17, 2008 Messages 3 Mar 4, 2008 #1 Please help me to solve this problem: Express as one logarithm: 4log base3 (2x+1) - 1/2log base 3 (3x-4) - log base7 (x+1) Your help is greatly appreciated.
Please help me to solve this problem: Express as one logarithm: 4log base3 (2x+1) - 1/2log base 3 (3x-4) - log base7 (x+1) Your help is greatly appreciated.
skeeter Elite Member Joined Dec 15, 2005 Messages 3,204 Mar 4, 2008 #2 Re: Logarithm Question \(\displaystyle 4\log_3(2x+1) - \frac{1}{2} \log_3(3x-4) - \log_7(x+1)\) start by changing the log base 7 to log base 3 ... \(\displaystyle 4\log_3(2x+1) - \frac{1}{2} \log_3(3x-4) - \frac{\log_3(x+1)}{\log_3{7}}\) use the power property for logs ... \(\displaystyle \log_3(2x+1)^4 - \log_3 \sqrt{3x-4} - \log_3(x+1)^{\frac{1}{\log_3{7}}\) combine the base 3 logs using the quotient property for logs ... \(\displaystyle \log_3 \left(\frac{(2x+1)^4}{\sqrt{3x-4} \cdot (x+1)^{\frac{1}{\log_3{7}}}} \right)\)
Re: Logarithm Question \(\displaystyle 4\log_3(2x+1) - \frac{1}{2} \log_3(3x-4) - \log_7(x+1)\) start by changing the log base 7 to log base 3 ... \(\displaystyle 4\log_3(2x+1) - \frac{1}{2} \log_3(3x-4) - \frac{\log_3(x+1)}{\log_3{7}}\) use the power property for logs ... \(\displaystyle \log_3(2x+1)^4 - \log_3 \sqrt{3x-4} - \log_3(x+1)^{\frac{1}{\log_3{7}}\) combine the base 3 logs using the quotient property for logs ... \(\displaystyle \log_3 \left(\frac{(2x+1)^4}{\sqrt{3x-4} \cdot (x+1)^{\frac{1}{\log_3{7}}}} \right)\)