Mathematical induction: Prove that 2^n > 3n for all n>

owenthakkar

New member
Joined
Aug 2, 2006
Messages
5
hey guys!! can anyone help me with this hard question?
its to do with mathematical induction (inequalitites)
i think im missing a step in my proof and i just cant figure it out.... :?

heres the question:

Prove that 2^n>3n for all positive integers where n is greater than or equal to 4

thanks guys
any help would be great
 
Clearly it is true for n=4, 16=24>12=(3)(4)\displaystyle 16 = 2^4 > 12 = \left( 3 \right)\left( 4 \right).
So we are on the path. Suppose we can get to the Kth step, that is
2K>(3)(K)\displaystyle 2^K > \left( 3 \right)\left( K \right) is true.

Now look at 2K+1\displaystyle 2^{K+1}.
We have \(\displaystyle \begin{array}{rcl}
2^{K + 1} & = & 2\left( {2^K } \right) \\
& > & 2\left( 3 \right)\left( K \right) \\
& = & \left( 3 \right)\left( {2K} \right) \\
& = & \left( 3 \right)\left( {K + K} \right) \\
& > & \left( 3 \right)\left( {K + 1} \right) \\
\end{array}\)

So we can go from the Kth place to the (K+1)th place.
 
Re: Mathematical induction: Prove that 2^n > 3n for all n

Hello, owenthakkar!

Here's my approach . . .


Prove that 2n>3n\displaystyle 2^n\:>\:3n for all positive integers where n4\displaystyle n\,\geq\,4

Note: for n4,  2n>3\displaystyle n\,\geq\,4,\;2^n\:>\: 3


First, verify S(1).\displaystyle S(1).


Then assume S(k):    2k  >  3k\displaystyle S(k):\;\;2^k \;>\; 3k

    \displaystyle \;\;Add 2k\displaystyle 2^k to both sides: 2k+2k  >  3k+2k\displaystyle \:2^k\,+\,2^k\;> \;3k\,+\,2^k

The left side is: 2k+2k  =  22k  =  2k+1\displaystyle \,2^k\,+\,2^k\;=\;2\cdot2^k\;=\;2^{k+1}

    \displaystyle \;\;So we have: 2k+1  >  3k+2k\displaystyle \,2^{k+1}\;>\;3k\,+\,2^k


Since 2k>3\displaystyle 2^k\,>\,3, we have: 2k+1  >  3k+2k  >  3k+3\displaystyle \,2^{k+1}\;>\;3k\,+\,2^k\;>\;3k\,+\,3

    \displaystyle \;\;Therefore: 2k+1  >3(k+1)\displaystyle \,2^{k+1}\;>\:3(k\,+\,1)

 
Top