minimum value of f(x)

as08998078

New member
Joined
Jul 22, 2015
Messages
6
(9) Let vector a=(2,3)\displaystyle \, \overrightarrow{a}\, =\, (2,\, 3)\, and b=(1,4).\displaystyle \, \overrightarrow{b}\, =\, (-1,\, 4).\, When xa=bx,\displaystyle \, \overrightarrow{x}\, -\, \overrightarrow{a}\, =\, \overrightarrow{b}\, -\, \overrightarrow{x},\, then x=(12,72)\displaystyle \, \overrightarrow{x}\, =\, \boxed{\left(\dfrac{1}{2},\, \dfrac{7}{2}\right)}

(10) Let f(x)=x3+6x29x+1.\displaystyle \, f(x)\, =\, -x^3\, +\, 6x^2\, -\, 9x\, +\, 1.

(i) The derivative f(x)=3x2+121\displaystyle \, f'(x)\, =\, \boxed{-3x^2\, +\, 12\, -\, 1}

(ii) Under 0x3,\displaystyle \, 0\, \leq\, x\, \leq\, 3,\, the minimum value of f(x)\displaystyle \, f(x)\, is: _________

2: There is a parabola A:y=x24x5.\displaystyle \, A\, :\, y\, =\, x^2\, -\, 4x\, -\, 5.

(1) The coordinate of the vertex of the parabola A is.....



In (ii) I don't know how to find the minimum value of f(x). Please help me.
(In the box, it is answer)
 
Last edited by a moderator:
(10) Let f(x)=x3+6x29x+1.\displaystyle \, f(x)\, =\, -x^3\, +\, 6x^2\, -\, 9x\, +\, 1.

(i) The derivative f(x)=3x2+121\displaystyle \, f'(x)\, =\, \boxed{-3x^2\, +\, 12\, -\, 1}

(ii) Under 0x3,\displaystyle \, 0\, \leq\, x\, \leq\, 3,\, the minimum value of f(x)\displaystyle \, f(x)\, is: _________



In (ii) I don't know how to find the minimum value of f(x).
What have you learned about derivatives and their relation to max/min points? What do you know about finding the x-intercepts (that is, the zeroes) of quadratics? ;)
 
Since the domain is restricted, there could be global max/min at the end points.
 
Last edited by a moderator:
(9) Let vector a=(2,3)\displaystyle \, \overrightarrow{a}\, =\, (2,\, 3)\, and b=(1,4).\displaystyle \, \overrightarrow{b}\, =\, (-1,\, 4).\, When xa=bx,\displaystyle \, \overrightarrow{x}\, -\, \overrightarrow{a}\, =\, \overrightarrow{b}\, -\, \overrightarrow{x},\, then x=(12,72)\displaystyle \, \overrightarrow{x}\, =\, \boxed{\left(\dfrac{1}{2},\, \dfrac{7}{2}\right)}

(10) Let f(x)=x3+6x29x+1.\displaystyle \, f(x)\, =\, -x^3\, +\, 6x^2\, -\, 9x\, +\, 1.

(i) The derivative f(x)=3x2+121\displaystyle \, f'(x)\, =\, \boxed{-3x^2\, +\, 12\, -\, 1} ..... Incorrect f(x)=3x2+12x9\displaystyle \, f'(x)\, =\, {-3x^2\, +\, 12x\, -\, 9}

(ii) Under 0x3,\displaystyle \, 0\, \leq\, x\, \leq\, 3,\, the minimum value of f(x)\displaystyle \, f(x)\, is: _________

2: There is a parabola A:y=x24x5.\displaystyle \, A\, :\, y\, =\, x^2\, -\, 4x\, -\, 5.

(1) The coordinate of the vertex of the parabola A is.....



In (ii) I don't know how to find the minimum value of f(x). Please help me.
(In the box, it is answer)
.
 
Top