as08998078
New member
- Joined
- Jul 22, 2015
- Messages
- 6
(9) Let vector \(\displaystyle \, \overrightarrow{a}\, =\, (2,\, 3)\,\) and \(\displaystyle \, \overrightarrow{b}\, =\, (-1,\, 4).\,\) When \(\displaystyle \, \overrightarrow{x}\, -\, \overrightarrow{a}\, =\, \overrightarrow{b}\, -\, \overrightarrow{x},\,\) then \(\displaystyle \, \overrightarrow{x}\, =\, \boxed{\left(\dfrac{1}{2},\, \dfrac{7}{2}\right)}\)
(10) Let \(\displaystyle \, f(x)\, =\, -x^3\, +\, 6x^2\, -\, 9x\, +\, 1.\)
(i) The derivative \(\displaystyle \, f'(x)\, =\, \boxed{-3x^2\, +\, 12\, -\, 1}\)
(ii) Under \(\displaystyle \, 0\, \leq\, x\, \leq\, 3,\, \) the minimum value of \(\displaystyle \, f(x)\, \) is: _________
2: There is a parabola \(\displaystyle \, A\, :\, y\, =\, x^2\, -\, 4x\, -\, 5.\)
(1) The coordinate of the vertex of the parabola A is.....
In (ii) I don't know how to find the minimum value of f(x). Please help me.
(In the box, it is answer)
(10) Let \(\displaystyle \, f(x)\, =\, -x^3\, +\, 6x^2\, -\, 9x\, +\, 1.\)
(i) The derivative \(\displaystyle \, f'(x)\, =\, \boxed{-3x^2\, +\, 12\, -\, 1}\)
(ii) Under \(\displaystyle \, 0\, \leq\, x\, \leq\, 3,\, \) the minimum value of \(\displaystyle \, f(x)\, \) is: _________
2: There is a parabola \(\displaystyle \, A\, :\, y\, =\, x^2\, -\, 4x\, -\, 5.\)
(1) The coordinate of the vertex of the parabola A is.....
In (ii) I don't know how to find the minimum value of f(x). Please help me.
(In the box, it is answer)
Last edited by a moderator: