Moment of inertia

Busybee

New member
Joined
May 22, 2014
Messages
3
The rotating parts of a motor have a moment of inertia of 15 kgm^2 and an optimum running speed of 1400 rev/min. When operating the motor is connected at optimum speed , by means of a clutch, to a shaft which has a counter rotation of 600 rev/min. The shaft has a mass of 80 kg and a solid diameter of 1200 mm.

i) Find the common speed of rotation of the two shafts, immediately after slippage has finished.
ii) Determine the change in angular momentum of the motor as the common speed is reached.
iii) Determine the change in angular kinetic energy of the motor as the common speed is reached.
iv) If the motor sends a torque of 220 Nm, find how long it will take for the system to regain optimum running speed for the motor.
 

The rotating parts of a motor have a moment of inertia of 15 kgm^2 and an optimum running speed of 1400 rev/min. When operating the motor is connected at optimum speed , by means of a clutch, to a shaft which has a counter rotation of 600 rev/min. The shaft has a mass of 80 kg and a solid diameter of 1200 mm.


i) Find the common speed of rotation of the two shafts, immediately after slippage has finished.
ii) Determine the change in angular momentum of the motor as the common speed is reached.
iii) Determine the change in angular kinetic energy of the motor as the common speed is reached.
iv) If the motor sends a torque of 220 Nm, find how long it will take for the system to regain optimum running speed for the motor.

Hello BusyBee:

Welcome to the boards. Please buzz over to the summary page of our posting guidelines. (Links to the complete guidelines, as well as to the forum rules, appear near the bottom of the summary page.)

This is a tutoring website, and the forums are maintained by volunteers. We need some idea of what you already understand about this exercise. Please post any work that you've done so far (even if you're not sure about it) and explain why or where you're stuck.

Thank you! :cool:
 
Top