I'm trying to find a proof for the following statement:
A sequence bn attains its limit b, if [FONT=MathJax_Main]∀[/FONT]ε>=0 [FONT=MathJax_Main]∃n0[/FONT][FONT=MathJax_Main]∀n[/FONT]>=[FONT=MathJax_Main]n[/FONT]0 | bn-b | <= ε.
How can I prove that the statement is true? Thanks for helping.
A sequence bn attains its limit b, if [FONT=MathJax_Main]∀[/FONT]ε>=0 [FONT=MathJax_Main]∃n0[/FONT][FONT=MathJax_Main]∀n[/FONT]>=[FONT=MathJax_Main]n[/FONT]0 | bn-b | <= ε.
How can I prove that the statement is true? Thanks for helping.