Need help w/ log_3(x) + log_9(x) = 3, log_2(x) * log_4(x) *

oded244

New member
Joined
Oct 4, 2007
Messages
38
log[sub:32z6dhkt]3[/sub:32z6dhkt]x + log[sub:32z6dhkt]9[/sub:32z6dhkt]x = 3

log[sub:32z6dhkt]2[/sub:32z6dhkt]x * log[sub:32z6dhkt]4[/sub:32z6dhkt]x * log[sub:32z6dhkt]8[/sub:32z6dhkt]x = 4.5

Thanks
 
oded244 said:
log[sub:1mepsbso]3[/sub:1mepsbso]x + log[sub:1mepsbso]9[/sub:1mepsbso]x = 3

log[sub:1mepsbso]2[/sub:1mepsbso]x * log[sub:1mepsbso]4[/sub:1mepsbso]x * log[sub:1mepsbso]8[/sub:1mepsbso]x = 4.5
What are you supposed to do with these equations? What were the instructions? What have you tried? How far have you gotten? Where are you stuck?

Please be complete. Thank you! :D

Eliz.
 
lol
i need to find x, i've tried to change the bases to the lower log (log3x and log2x in the second one)
 
Have you conisdered a change of base?

\(\displaystyle \frac{log(x)}{log(3)} + \frac{log(x)}{log(9)} = 3\)

Or maybe

\(\displaystyle \frac{log_{3}(x)}{log_{3}(3)} + \frac{log_{3}(x)}{log_{3}(9)} = 3\)

Or notice that

\(\displaystyle \frac{log_{3}(x)}{log_{3}(3)} + \frac{log_{3}(x)}{log_{3}(9)} = 3 = log_{3}(27)\)
 
Hello, oded244!

Here's another approach . . .


\(\displaystyle \log_3(x) + \log_9(x) \:=\: 3 \;\;{\bf[1]}\)

\(\displaystyle \text{Let: }\,\log_9(x) \:=\:Q \quad\Rightarrow\quad 9^Q \:=\:x\)

\(\displaystyle \text{Take logs, base 3: }\:\log_3(9^Q) \:=\:\log_3(x) \quad\Rightarrow\quad \log_3(3^2)^Q \:=\:\log_3(x)\)

. . \(\displaystyle \log_3(3^{2Q}) \:=\:\log_3(x) \quad\Rightarrow\quad 2Q\!\cdot\!\log_3(3) \:=\:\log_3(x) \quad\Rightarrow\quad Q \:=\:\frac{1}{2}\log_3(x)\)

\(\displaystyle \text{Hence: }\;\log_9(x) \:=\:\frac{1}{2}\log_3(x)\)


\(\displaystyle \text{Substitute into {\bf[1]}: }\;\log_3(x) + \frac{1}{2}\log_3(x) \:=\:3\)

. . \(\displaystyle \frac{3}{2}\log_3(x) \:=\:3 \quad\Rightarrow\quad \log_3(x) \:=\:2 \quad\Rightarrow\quad x \:=\:3^2\)


\(\displaystyle \text{Therefore: }\;x \;=\;9\)

 
To add or subtract fractions, we first need to find a common denominator. Same with logarithms, we need to find a common base. I usually use e from the natural logarithm.

Ergo: \(\displaystyle \log_2(x) + \log_4(x) + \log_8(x) = 4.5\).

\(\displaystyle Let \log_2(x) = k, then x = 2^{k}, kln(2) = ln(x), k = \frac{ln(x)}{ln(2)} = \log_2(x)\). Using the same method on the other two logarithms, we get:

\(\displaystyle \frac{ln(x)}{ln(2)} + \frac{ln(x)}{2ln(2)} + \frac{ln(x)}{3ln(2)} = 4.5\) Then

\(\displaystyle \frac{6ln(x) +3ln(x) + 2ln(x)}{6ln(2)} = 4.5\) \(\displaystyle 11ln(x) = 27ln(2), ln(x) = ln2^{27/11}, x = 2^{27/11}\)

Like differential equations (those that can be solved (implicitly or explicitly)), one can always check his answer by plugging in the results obtained, in this case, \(\displaystyle x = 2^{27/11}\).
 
Top