The subject I'm writing about is rocket science. The task is to predict the movement of a rocket in 2 dimensions. I understand this is a maths forum, but we'll get there.

I'm able to construct two acceleration equations:

u, g, A, cw, p (rho), dm/dt are all constants while m (mass of the rocket) and v

_{y}and v

_{x}change depending on the time (speed in vertical and horizontal direction respectively). Since I'm interested in the position functions, I must solve second order differential equations.

I wrote in my project that they are difficult to solve analytically because it's a 'linked/codependent equation system' without really knowing what I was talking about. Basically, I need to understand why it's relevant to use numerical methods instead of analytical ones in this problem.