Please help with this limit: [(3+n)(-sqrt[1+n]+sqrt[7+n])]/sqrt[4+n]

emii64

New member
Joined
Sep 8, 2015
Messages
2
I need some help. I've tried so many different ways but ive never found the solution.

\(\displaystyle \displaystyle \lim_{n\, \rightarrow \, \infty}\, \dfrac{(3\, +\, n)\, \left(-\sqrt{\strut 1\, +\, n\,}\, +\, \sqrt{\strut 7\, +\, n\,}\right)}{\sqrt{\strut 4\, +\, n\,}}\)
 
Last edited by a moderator:
I need some help. I've tried so many different ways but ive never found the solution.

\(\displaystyle \displaystyle \lim_{n\, \rightarrow \, \infty}\, \dfrac{(3\, +\, n)\, \left(-\sqrt{\strut 1\, +\, n\,}\, +\, \sqrt{\strut 7\, +\, n\,}\right)}{\sqrt{\strut 4\, +\, n\,}}\)
Multiply by \(\displaystyle \displaystyle{\dfrac{\sqrt{1+n}+\sqrt{7+n}}{\sqrt{1+n}+\sqrt{7+n}}}\) - simplify - then take the limit

What are your thoughts?

Please share your work with us ...even if you know it is wrong

If you are stuck at the beginning tell us and we'll start with the definitions.

You need to read the rules of this forum. Please read the post titled "
Read before Posting" at the following URL:

http://www.freemathhelp.com/forum/th...Before-Posting
 
Last edited by a moderator:
Thank you, i could find a solution

\(\displaystyle \dfrac{6n\, +\, 18}{\sqrt{\strut\, n^2\, +\, 5n\, +\, 4\,}\, +\, \sqrt{\strut \, n^2\, +\, 11n\, +\, 28\,}}\)

then

\(\displaystyle \dfrac{n\left(6\, +\, \dfrac{18}{n}\right)}{n\,\left(\, \sqrt{\strut\, \dfrac{11}{n}\, +\, \dfrac{28}{n^2}\, +\, 1\,}\, \right)\, +\, n\,\left(\, \sqrt{\strut\, 1\, +\, \dfrac{5}{n}\, +\, \dfrac{4}{n^2}\, }\, \right)}\, \)

\(\displaystyle =\, \dfrac{n\, \left(6\, +\, \dfrac{18}{n}\right)}{n\, \left( \sqrt{\strut\, \dfrac{11}{n}\, +\, \dfrac{28}{n^2}\, +\, 1\,}\, + \,1\, \sqrt{\strut\, 1\, +\, \dfrac{5}{n}\, +\, \dfrac{4}{n^2}\, }\, \right)}\)

and the limit is 3 . Its ok??

And sorry but im from Argentina and im not speak english very well.
 
Last edited by a moderator:
Thank you, i could find a solution

\(\displaystyle \dfrac{6n\, +\, 18}{\sqrt{\strut\, n^2\, +\, 5n\, +\, 4\,}\, +\, \sqrt{\strut \, n^2\, +\, 11n\, +\, 28\,}}\)

then

\(\displaystyle \dfrac{n\left(6\, +\, \dfrac{18}{n}\right)}{n\,\left(\, \sqrt{\strut\, \dfrac{11}{n}\, +\, \dfrac{28}{n^2}\, +\, 1\,}\, \right)\, +\, n\,\left(\, \sqrt{\strut\, 1\, +\, \dfrac{5}{n}\, +\, \dfrac{4}{n^2}\, }\, \right)}\, \)

\(\displaystyle =\, \dfrac{n\, \left(6\, +\, \dfrac{18}{n}\right)}{n\, \left( \sqrt{\strut\, \dfrac{11}{n}\, +\, \dfrac{28}{n^2}\, +\, 1\,}\, + \,1\, \sqrt{\strut\, 1\, +\, \dfrac{5}{n}\, +\, \dfrac{4}{n^2}\, }\, \right)}\)

and the limit is 3 . Its ok??

And sorry but im from Argentina and im not speak english very well.

Looks good to me!!
 
Last edited by a moderator:
Top