Probability question

Daniel_Feldman

Full Member
Joined
Sep 30, 2005
Messages
252
Never mind, I've figured it out.

The probability of getting a two pair needs to have a 2! in the denominator, because getting pair A and then pair B is the same as B then A. That was my error.
 
Daniel_Feldman said:
No, never.
Google isn't going to make me understand these concepts if I have it wrong.
Huh? A google search will give you loads of sites that explain concepts.

To make you "understand" requires classroom environment...not available here.

Did you read "Read before posting"?
 
Hello, Daniel!

I'll re-order the questions . . . in order of increasing difficulty.

Yes, the number of possible hands is: (525)=2, ⁣598, ⁣960\displaystyle \text{Yes, the number of possible hands is: }\:{52\choose5} \:=\:2,\!598,\!960

This is the denominator for all the questions.


Assuming that all poker hands are equally likely (i.e., 52C5), then find the probability of being dealt:

(a) Flush (5 cards, all of the same suit)

Your reasoning is correct!

There are 4 choices of suits, then (135) ways to get a flush in that suit.\displaystyle \text{There are }4\text{ choices of suits, then }{13\choose5} \text{ ways to get a flush in that suit.}

Therefore, the numerator of P(Flush) is: 4(135)\displaystyle \text{Therefore, the numerator of }P(\text{Flush})\text{ is: }\:4\cdot{13\choose5}



(e) Four of a Kind

There are 13 choices for the value of the four-of-a-kind.
. . And 48 choices for the fifth card.

Therefore, the numerator of P(4-of-a-Kind) is: 1348\displaystyle \text{Therefore, the numerator of }P(\text{4-of-a-Kind})\text{ is: }\:13\cdot48



(d) Three of a Kind

There are 13 choices for the value of the Triple.
There are: (43)=4 ways to get the Triple.\displaystyle \text{There are: }{4\choose3} = 4\text{ ways to get the Triple.}

The last two cards must not match the Triple or each other.
. . There are: 48442 ways.\displaystyle \text{There are: }\frac{48\cdot44}{2}\text{ ways.}

Therefore, the numerator of P(3-of-a-Kind) is: 13448442\displaystyle \text{Therefore, the numerator of }P(\text{3-of-a-Kind})\text{ is: }\:13\cdot4\cdot\frac{48\cdot44}{2}



(c) Two Pairs

There are: (132) choices of the values of the Two Pairs.\displaystyle \text{There are: }\:{13\choose2}\text{ choices of the values of the Two Pairs.}

There are: (42)(42) ways to get the Two Pairs.\displaystyle \text{There are: }\:{4\choose2}{4\choose2}\text{ ways to get the Two Pairs.}

The fifth card card must not match either of the Pairs: 44 choices.\displaystyle \text{The fifth card card must not match either of the Pairs: }\:44\text{ choices.}

Therefore, the numerator of P(Two Pairs) is: (132)(42)(42)44\displaystyle \text{Therefore, the numerator of }P(\text{Two Pairs}) \text{ is: }\:{13\choose2}{4\choose2}{4\choose2}\cdot44



(b) One Pair

There are 13 choices for the value of the Pair.\displaystyle \text{There are 13 choices for the value of the Pair.}

There are (42) ways to get the Pair.\displaystyle \text{There are }{4\choose2}\text{ ways to get the Pair.}

The last three cards must not match the Pair or each other: 4844403! ways.\displaystyle \text{The last three cards must not match the Pair or each other: }\:\frac{48\cdot44\cdot40}{3!}\text{ ways.}

Threfore, the numerator of P(One Pair) is: 13(42)4844403!\displaystyle \text{Threfore, the numerator of }P(\text{One Pair}) \text{ is: }\:13\cdot{4\choose2}\cdot\frac{48\cdot44\cdot40}{3!}

 
THERE!! Soroban just added another "site" for google to find... :wink:
 
Top