PROBABILITY

CAMELSMOM

New member
Joined
Nov 7, 2009
Messages
2
i HAVE A STATS QUESTION AND I JUST NEED HELP GETTING STARTED can anyone help me????
. _
P(AorB)=.85
. _
P(Aand B)=.41
. _____
P(Aor B)=.21
........... _
Find P(A/B)

please ignore periods above... this is the only way I can figure to get the lines where I need them
 
Hello, CAMELSMOM!

I have a solution . . . I hope I can explain it clearly.
And I sincerely hope that someone has a more elegant solution . . .


\(\displaystyle \text{Given: }\;\begin{array}{cccc} P(\overline{A} \cup B) &=& 0.85 & [1] \\ \\[-3mm] P(\overline{A} \cap B) &=& 0.41 & [2]\\ \\[-3mm] P(\overline{A \cup B}) &=& 0.21 & [3]\end{array}\)

Find:   P(AB)\displaystyle \text{Find: }\; P(A\,|\,\overline{B})

The "opposite" of P(AB) is P(AB)\displaystyle \text{The "opposite" of }P(A\,|\,\overline{B})\,\text{ is }\,P(\overline{A}\,|\,\overline{B})

Bayes’ Theorem:   P(AB)  =  P(AB)P(B)    [4]\displaystyle \text{Bayes' Theorem: }\;P(\overline{A}\,|\,\overline{B}) \;=\;\frac{P(\overline{A} \cap \overline{B})}{P(\overline{B})}\;\;[4]


DeMorgan’s Law: AB  =  AB\displaystyle \text{DeMorgan's Law: }\:\overline{A \cup B} \;=\;\overline{A} \cap \overline{B}

So [3] becomes:   P(AB)=0.21    [5]\displaystyle \text{So [3] becomes: }\;P(\overline{A} \cap \overline{B}) \:=\:0.21\;\;[5]


Consider the "opposite" of [1]:   P(AB)  =  0.15\displaystyle \text{Consider the "opposite" of [1]: }\;P(\overline{\overline{A} \cup B}) \;=\;0.15

DeMorgan’s Law:   (AB)  =  AB\displaystyle \text{DeMorgan's Law: }\;\overline{(\overline{A} \cup B)} \;=\;A \cap \overline{B}

So, the opposite of [1] is:   P(AB)=0.15    [6]\displaystyle \text{So, the opposite of [1] is: }\;P(A \cap \overline{B}) \:=\:0.15\;\;[6]


Combining [5] and [6], we have:   P(B)  =  P(A    B)  +  P(A    B)  =  0.15  +  0.25  =  0.36    [7]\displaystyle \text{Combining [5] and [6], we have: }\;P(\overline{B}) \;=\;P(\overline{A} \;\cap \;\overline{B}) \;+\; P(A \;\cap\; \overline{B}) \;=\;0.15 \;+\; 0.25 \;=\;0.36\;\;[7]


Substitute [5] and [7] into [4]:   P(AB)  =  0.210.36  =  712\displaystyle \text{Substitute [5] and [7] into [4]: }\;P(\overline{A}\,|\overline{B}) \;=\;\frac{0.21}{0.36} \;=\;\frac{7}{12}


Therefore:   P(AB)  =  1712  =  512\displaystyle \text{Therefore: }\;P(A\,|\,\overline{B}) \;=\;1-\frac{7}{12} \;=\;\frac{5}{12}

 
Top