\(\displaystyle \displaystyle \int\limits_0^1 {{2 \over {{{(1 + {x^2})}^2}}}dx} \)
Is there any easier way to approach this problem, rather than using the following formula?
\(\displaystyle \displaystyle \int {{1 \over {{{({a^2} + {x^2})}^2}}}} dx = {{{\textstyle{{ax} \over {{a^2} + {x^2}}}} + \arctan ({\textstyle{x \over a}})} \over {2{a^3}}} + C \)
Many thanks in advance.
Is there any easier way to approach this problem, rather than using the following formula?
\(\displaystyle \displaystyle \int {{1 \over {{{({a^2} + {x^2})}^2}}}} dx = {{{\textstyle{{ax} \over {{a^2} + {x^2}}}} + \arctan ({\textstyle{x \over a}})} \over {2{a^3}}} + C \)
Many thanks in advance.