Proving a logarithmic equation

Aion

Junior Member
Joined
May 8, 2018
Messages
214
Find log54168\log_{54}{168} if log712=a\log_7{12}=a and log1224=b\log_{12}{24}=b

Solution attempt:

We first rewrite the given logarithms with the change of base formula

log54168=ln168ln54=3ln2+ln3+ln7ln2+3ln3\log_{54}{168}=\frac{\ln{168}}{\ln54}=\frac{3\ln2+\ln3+\ln7}{\ln2+3\ln3}
and
a=log712=ln12ln7=2ln2+ln3ln7a=\log_{7}{12}=\frac{\ln12}{\ln7}=\frac{2\ln2+\ln3}{\ln7}b=log1224=ln24ln12=3ln2+ln32ln2+ln3b=\log_{12}{24}=\frac{\ln24}{\ln12}=\frac{3\ln2+\ln3}{2\ln2+\ln3}
Now define x=ln2,y=ln3,z=ln7x=\ln2,y=\ln3,z=\ln7
From the two conditions above on aa and bb, we get the two linear equations
2x+yaz=0(2b3)x+(b1)y=0\begin{aligned} 2x+y-az=0 \\ (2b-3)x+(b-1)y=0 \end{aligned}
Divide each term by zz such that x=xzx'=\frac{x}{z}, y=yzy'=\frac{y}{z}. This gives us the system
2x+ya=0(2b3)x+(b1)y=0\begin{aligned} 2x'+y'-a=0 \\ (2b-3)x'+(b-1)y'=0 \end{aligned}
Using the cross-multiplication rule, we find that

xa(b1)=ya(32b)=1\frac{x'}{a(b-1)}=\frac{y'}{a(3-2b)}=1
which shows us that
xy=xy=b132b    x=(b1)y32b\frac{x'}{y'}=\frac{x}{y}=\frac{b-1}{3-2b}\implies x=\frac{(b-1)y}{3-2b}
We now solve for zz in terms of yy.

z=2x+ya=2((b1)y32b)+ya=ya(32b)z=\frac{2x+y}{a}=\frac{2\left(\frac{(b-1)y}{3-2b}\right)+y}{a}=\frac{y}{a(3-2b)}
Now we can substitute the values for xx and zz back into the expression for log54168\log_{54}{168} such that the yy terms cancel.

log54168=3x+y+z3y+x=3((b1)y32b)+y+(ya(32b))3y+((b1)y32b)=b+1a85b=ab+1a(85b)\log_{54}{168}=\frac{3x+y+z}{3y+x}=\frac{3\left(\frac{(b-1)y}{3-2b}\right)+y+\left(\frac{y}{a(3-2b)}\right)}{3y+\left(\frac{(b-1)y}{3-2b}\right)}=\frac{b+\frac{1}{a}}{8-5b}=\frac{ab+1}{a(8-5b)}\quad\square
What do you guys think of my method? I'm not entirely sure why the cancellation of yy occurs, but I assume it because both the numerator and denominator are linear combinations of xx, yy, and zz.
 
Last edited:
I haven't checked all your steps, but it looks fine. I only think there may be a shorter version using the fact that 12 is almost everywhere in the problem statement.
 
If we work with log2 \log_2 , which saves the variable x x and I made no mistakes, then the linear equation system is



(1ab10)(log23log27)=(232b)(log23log27)=1aba(0a1b1)(232b) \begin{pmatrix}1&-a\\b-1&0 \end{pmatrix}\begin{pmatrix}\log_2 3\\\log_2 7\end{pmatrix}=\begin{pmatrix}-2\\3-2b\end{pmatrix}\\[12pt] \begin{pmatrix}\log_2 3\\ \log_2 7\end{pmatrix}=\dfrac{1}{ab-a}\begin{pmatrix}0&a\\1-b&1\end{pmatrix}\begin{pmatrix}-2\\3-2b\end{pmatrix}
and therefore



log23=32bb1log27=1abalog54168=3+log23+log271+log23=\begin{array}{lll} \log_2 3&=\dfrac{3-2b}{b-1}\\[12pt] \log_2 7&=\dfrac{1}{ab-a}\\[12pt] \log_{54}168&=\dfrac{3+\log_2 3+\log_2 7}{1+\log_2 3}=\ldots \end{array}
This gives the same result.
 
Find log54168\log_{54}{168} if log712=a\log_7{12}=a and log1224=b\log_{12}{24}=b

Solution attempt:

We first rewrite the given logarithms with the change of base formula

log54168=ln168ln54=3ln2+ln3+ln7ln2+3ln3\log_{54}{168}=\frac{\ln{168}}{\ln54}=\frac{3\ln2+\ln3+\ln7}{\ln2+3\ln3}
and
a=log712=ln12ln7=2ln2+ln3ln7a=\log_{7}{12}=\frac{\ln12}{\ln7}=\frac{2\ln2+\ln3}{\ln7}b=log1224=ln24ln12=3ln2+ln32ln2+ln3b=\log_{12}{24}=\frac{\ln24}{\ln12}=\frac{3\ln2+\ln3}{2\ln2+\ln3}
Now define x=ln2,y=ln3,z=ln7x=\ln2,y=\ln3,z=\ln7
From the two conditions above on aa and bb, we get the two linear equations
2x+yaz=0(2b3)x+(b1)y=0\begin{aligned} 2x+y-az=0 \\ (2b-3)x+(b-1)y=0 \end{aligned}
Divide each term by zz such that x=xzx'=\frac{x}{z}, y=yzy'=\frac{y}{z}. This gives us the system
2x+ya=0(2b3)x+(b1)y=0\begin{aligned} 2x'+y'-a=0 \\ (2b-3)x'+(b-1)y'=0 \end{aligned}
Using the cross-multiplication rule, we find that

xa(b1)=ya(32b)=1\frac{x'}{a(b-1)}=\frac{y'}{a(3-2b)}=1
which shows us that
xy=xy=b132b    x=(b1)y32b\frac{x'}{y'}=\frac{x}{y}=\frac{b-1}{3-2b}\implies x=\frac{(b-1)y}{3-2b}
We now solve for zz in terms of yy.

z=2x+ya=2((b1)y32b)+ya=ya(32b)z=\frac{2x+y}{a}=\frac{2\left(\frac{(b-1)y}{3-2b}\right)+y}{a}=\frac{y}{a(3-2b)}
Now we can substitute the values for xx and zz back into the expression for log54168\log_{54}{168} such that the yy terms cancel.

log54168=3x+y+z3y+x=3((b1)y32b)+y+(ya(32b))3y+((b1)y32b)=b+1a85b=ab+1a(85b)\log_{54}{168}=\frac{3x+y+z}{3y+x}=\frac{3\left(\frac{(b-1)y}{3-2b}\right)+y+\left(\frac{y}{a(3-2b)}\right)}{3y+\left(\frac{(b-1)y}{3-2b}\right)}=\frac{b+\frac{1}{a}}{8-5b}=\frac{ab+1}{a(8-5b)}\quad\square
What do you guys think of my method? I'm not entirely sure why the cancellation of yy occurs, but I assume it because both the numerator and denominator are linear combinations of xx, yy, and zz.
I've checked your answer with a quick and dirty script, and it looks correct.
 
Top