Find [imath]\log_{54}{168}[/imath] if [imath]\log_7{12}=a[/imath] and [imath]\log_{12}{24}=b[/imath]
Solution attempt:
We first rewrite the given logarithms with the change of base formula
[math]\log_{54}{168}=\frac{\ln{168}}{\ln54}=\frac{3\ln2+\ln3+\ln7}{\ln2+3\ln3}[/math]
and
[math]a=\log_{7}{12}=\frac{\ln12}{\ln7}=\frac{2\ln2+\ln3}{\ln7}[/math][math]b=\log_{12}{24}=\frac{\ln24}{\ln12}=\frac{3\ln2+\ln3}{2\ln2+\ln3}[/math]
Now define [math]x=\ln2,y=\ln3,z=\ln7[/math]
From the two conditions above on [imath]a[/imath] and [imath]b[/imath], we get the two linear equations
[math]\begin{aligned} 2x+y-az=0 \\ (2b-3)x+(b-1)y=0 \end{aligned}[/math]
Divide each term by [imath]z[/imath] such that [imath]x'=\frac{x}{z}[/imath], [imath]y'=\frac{y}{z}[/imath]. This gives us the system
[math]\begin{aligned} 2x'+y'-a=0 \\ (2b-3)x'+(b-1)y'=0 \end{aligned}[/math]
Using the cross-multiplication rule, we find that
[math]\frac{x'}{a(b-1)}=\frac{y'}{a(3-2b)}=1[/math]
which shows us that
[math]\frac{x'}{y'}=\frac{x}{y}=\frac{b-1}{3-2b}\implies x=\frac{(b-1)y}{3-2b}[/math]
We now solve for [imath]z[/imath] in terms of [imath]y[/imath].
[math]z=\frac{2x+y}{a}=\frac{2\left(\frac{(b-1)y}{3-2b}\right)+y}{a}=\frac{y}{a(3-2b)}[/math]
Now we can substitute the values for [imath]x[/imath] and [imath]z[/imath] back into the expression for [imath]\log_{54}{168}[/imath] such that the [imath]y[/imath] terms cancel.
[math]\log_{54}{168}=\frac{3x+y+z}{3y+x}=\frac{3\left(\frac{(b-1)y}{3-2b}\right)+y+\left(\frac{y}{a(3-2b)}\right)}{3y+\left(\frac{(b-1)y}{3-2b}\right)}=\frac{b+\frac{1}{a}}{8-5b}=\frac{ab+1}{a(8-5b)}\quad\square[/math]
What do you guys think of my method? I'm not entirely sure why the cancellation of [imath]y[/imath] occurs, but I assume it because both the numerator and denominator are linear combinations of [imath]x[/imath], [imath]y[/imath], and [imath]z[/imath].
Solution attempt:
We first rewrite the given logarithms with the change of base formula
[math]\log_{54}{168}=\frac{\ln{168}}{\ln54}=\frac{3\ln2+\ln3+\ln7}{\ln2+3\ln3}[/math]
and
[math]a=\log_{7}{12}=\frac{\ln12}{\ln7}=\frac{2\ln2+\ln3}{\ln7}[/math][math]b=\log_{12}{24}=\frac{\ln24}{\ln12}=\frac{3\ln2+\ln3}{2\ln2+\ln3}[/math]
Now define [math]x=\ln2,y=\ln3,z=\ln7[/math]
From the two conditions above on [imath]a[/imath] and [imath]b[/imath], we get the two linear equations
[math]\begin{aligned} 2x+y-az=0 \\ (2b-3)x+(b-1)y=0 \end{aligned}[/math]
Divide each term by [imath]z[/imath] such that [imath]x'=\frac{x}{z}[/imath], [imath]y'=\frac{y}{z}[/imath]. This gives us the system
[math]\begin{aligned} 2x'+y'-a=0 \\ (2b-3)x'+(b-1)y'=0 \end{aligned}[/math]
Using the cross-multiplication rule, we find that
[math]\frac{x'}{a(b-1)}=\frac{y'}{a(3-2b)}=1[/math]
which shows us that
[math]\frac{x'}{y'}=\frac{x}{y}=\frac{b-1}{3-2b}\implies x=\frac{(b-1)y}{3-2b}[/math]
We now solve for [imath]z[/imath] in terms of [imath]y[/imath].
[math]z=\frac{2x+y}{a}=\frac{2\left(\frac{(b-1)y}{3-2b}\right)+y}{a}=\frac{y}{a(3-2b)}[/math]
Now we can substitute the values for [imath]x[/imath] and [imath]z[/imath] back into the expression for [imath]\log_{54}{168}[/imath] such that the [imath]y[/imath] terms cancel.
[math]\log_{54}{168}=\frac{3x+y+z}{3y+x}=\frac{3\left(\frac{(b-1)y}{3-2b}\right)+y+\left(\frac{y}{a(3-2b)}\right)}{3y+\left(\frac{(b-1)y}{3-2b}\right)}=\frac{b+\frac{1}{a}}{8-5b}=\frac{ab+1}{a(8-5b)}\quad\square[/math]
What do you guys think of my method? I'm not entirely sure why the cancellation of [imath]y[/imath] occurs, but I assume it because both the numerator and denominator are linear combinations of [imath]x[/imath], [imath]y[/imath], and [imath]z[/imath].
Last edited: