Reduction Formula

sareen

New member
Joined
Oct 9, 2009
Messages
24
Use integration by parts to prove the reduction formula:
?(lnx)^n dx= x(lnx)^n - n?(lnx)^n-1 dx

Then use the above to evaluate the integral:
? (lnx)^3 dx
 
Hello, sareen!

Use integration by parts to prove the reduction formula:
. . (lnx)ndx  =  x(lnx)nn(lnx)n1dx\displaystyle \int(\ln x)^n\,dx \;=\; x(\ln x)^n - n\int(\ln x)^{n-1}dx

Let:   u=(lnx)ndv=dxdu=n(lnx)n1dxxv=x\displaystyle \text{Let: }\;\begin{array}{ccccccc}u &=& (\ln x)^n & & dv &=& dx \\ du &=& n(\ln x)^{n-1}\frac{dx}{x} && v &=& x \end{array}


Then:   (lnx)xudxdv  =  (lnx)nuxvxvn(lnx)n1dxxdu\displaystyle \text{Then: }\;\int\underbrace{(\ln x)^x}_u\,\underbrace{dx}_{dv} \;=\;\underbrace{(\ln x)^n}_u\cdot \underbrace{x}_v - \int\underbrace{x}_v\cdot\underbrace{ n(\ln x)^{n-1}\tfrac{dx}{x}}_{du}

. . . . . . . . . . . . . . . .=  x(lnx)nn(lnx)n1dx\displaystyle =\; x(\ln x)^n - n\int (\ln x)^{n-1}dx



Then use the above to evaluate the integral:
. . (lnx)3dx\displaystyle \int (\ln x)^3 dx

(lnx)3dx  =  x(ln)33(lnx)2dx\displaystyle \int(\ln x)^3dx \;=\; x(\ln)^3 - 3\underbrace{\int(\ln x)^2dx}
. . . . . . . . =  x(lnx)33[x(lnx)22 ⁣ ⁣lnxdx]+C\displaystyle = \; x(\ln x)^3 - 3\overbrace{ \bigg[x(\ln x)^2 - 2\!\!\int \ln x\,dx\bigg]}^{\searrow\quad} + C

. . . . . . . . =  x(lnx)33x(lnx)2+6lnxdx+C\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6\underbrace{\int \ln x\,dx}_{\quad\searrow} + C
. . . . . . . . =  x(lnx)33x(lnx)2+6[xlnxdx]+C\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6\overbrace{\bigg[x\ln x - \int dx\bigg]} + C

. . . . . . . . =  x(lnx)33x(lnx)2+6[xlnxx]+C\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6\bigg[x\ln x - x\bigg] + C

. . . . . . . . =  x(lnx)33x(lnx)2+6xlnx6x+C\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6x\ln x - 6x + C

 
Top